
FlowLens: Enabling Efficient Flow Classification for
ML-based Network Security Applications

Diogo Barradas, Nuno Santos, Luı́s Rodrigues, Salvatore Signorello†, Fernando M. V. Ramos, André Madeira
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

{diogo.barradas, nuno.m.santos, ler, fvramos, andre.madeira}@tecnico.ulisboa.pt
†LASIGE, Faculdade de Ciências, Universidade de Lisboa

ssignorello@ciencias.ulisboa.pt

Abstract—An emerging trend in network security consists in
the adoption of programmable switches for performing various
security tasks in large-scale, high-speed networks. However, since
existing solutions are tailored to specific tasks, they cannot accom-
modate a growing variety of ML-based security applications, i.e.,
security-focused tasks that perform targeted flow classification
based on packet size or inter-packet frequency distributions with
the help of supervised machine learning algorithms. We present
FlowLens, a system that leverages programmable switches to
efficiently support multi-purpose ML-based security applications.
FlowLens collects features of packet distributions at line speed
and classifies flows directly on the switches, enabling network
operators to re-purpose this measurement primitive at run-
time to serve a different flow classification task. To cope with
the resource constraints of programmable switches, FlowLens
computes for each flow a memory-efficient representation of
relevant features, named “flow marker”. Despite its small size,
a flow marker contains enough information to perform accurate
flow classification. Since flow markers are highly customizable
and application-dependent, FlowLens can automatically param-
eterize the flow marker generation guided by a multi-objective
optimization process that can balance their size and accuracy.
We evaluated our system in three usage scenarios: covert channel
detection, website fingerprinting, and botnet chatter detection. We
find that very small markers enable FlowLens to achieve a 150
fold increase in monitoring capacity for covert channel detection
with an accuracy drop of only 3% when compared to collecting
full packet distributions.

I. INTRODUCTION

Recently, several systems have been proposed for tackling
security concerns in modern high-speed networks [90, 33, 49,
82]. By leveraging the capabilities offered by programmable
switches, these systems can process packets at line speed
directly on the switch hardware, bringing relevant benefits
for network security, such as decreased reaction times to
attacks, avoidance of network bottlenecks, and decreased costs
associated to equivalent centralized server-based infrastructures.
So far, the proposed systems target very specific security-
driven tasks. These tasks include the ability to mitigate DDoS
attacks [90], enforce context-aware security policies [33],
obfuscate network topologies [49], filter spoofed traffic [37],
or detect data exfiltration through timing covert channels [82].

However, besides the specific tasks tackled by the previous
work, there is currently a lack of support for a new range of
security applications that resort to machine learning (ML) to
classify flows in real time [92, 27]. This brand of applications
has become more relevant as a result of a global trend towards
encrypting all Internet traffic [20, 58], which has rendered
deep-packet inspection (DPI) increasingly ineffective. As an
alternative to DPI, the use of ML-based techniques has proved
useful to classify flows with high accuracy for a wide range
of scenarios, such as multimedia covert channel detection [7],
website fingerprinting [40], botnet traffic identification [53],
malware tracking [2], IoT device behavioral analysis [59, 79],
or detection of DRM-protected streaming [26, 68, 66].

Most of these ML-based applications rely on supervised
machine learning algorithms [7, 40, 68, 53] that need to collect
flow features such as packet length and/or inter-packet time
frequency distributions. However, both the set of features and
ML algorithms used are highly application-dependent. As such,
a general service to enable the implementation of ML-based
security applications must be versatile enough to accommodate
application-specific requirements without impairing its ability
to produce accurate classification results. In addition, it must
efficiently use the limited switch resources to maximize the
number of flows that can be probed, scale to large networks
comprising numerous switches, introduce minimal switch
downtime caused by upgrades of switch programs, and require
low maintenance effort.

We present FlowLens, a system that enables efficient flow
classification for multi-purpose ML-based security applications.
At the heart of our system lies a set of software components
that run on the network switches’ data plane and control plane.
These components are responsible for collecting compact, but
meaningful, features of the flows going past the data plane, and
for running the ML-based algorithms responsible for classifying
the flows on the control plane in real time. By performing both
these tasks on the switches in a fully decentralized fashion,
FlowLens does not depend on a centralized service that could
introduce bottlenecks for operations in the critical path. To
deliver the best performance, these software components must
be fine-tuned for each specific ML-based security application.
FlowLens includes the mechanisms to generate (and upload to
the switches) application-dependent configurations that strike
a good balance between classification accuracy and switch
resource utilization efficiency. Because these configurations
can be automatically generated, the maintenance effort of our
system is greatly reduced.

Network and Distributed Systems Security (NDSS) Symposium 2021
21-24 February 2021, San Diego, CA, USA
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24067
www.ndss-symposium.org



A key challenge in fully offloading ML-based flow analysis
onto the switches is tied to the hardware and programming
restrictions of modern programmable switches. Ideally, we
would like to collect the full packet length and inter-packet
arrival time frequency distributions for every flow traveling
through the switches. This approach would allow us to collect
full per-flow information (on the data plane) which different
applications could then process in order to extract relevant
features and running specific ML classifiers (on the control
plane). However, given that the amount of stateful switch
memory is very limited, an information-lossless scheme for
collecting flow data would considerably reduce the coverage of
our system, i.e., the number of simultaneous flows that could
be probed. In alternative, one could employ a lossfull scheme
where the amount of dedicated memory allocated per flow
is reduced thereby increasing flow coverage. Such a scheme,
however, must be such that (1) the collected information does
not deteriorate the accuracy of flow classification, (2) it can be
implemented with a small set of basic hardware instructions
and within few compute cycles as imposed by the switch, and
(3) it precludes the need to frequently reprogram the switch as
it would cause switch downtime in the order of seconds.

To address this challenge, we make two core technical
contributions. First, we devised a new compact representation
of packet length and inter-time packet arrival distributions
which is small yet provides enough information to perform
accurate application-specific traffic classification. We name such
representations flow markers. We then developed a primitive
named Flow Marker Accumulator (FMA) which generates flow
markers while depending on simple and efficient operations
that can be implemented on modern programmable switches.
The FMA consists of a parameterizable data structure deployed
on the data plane pipeline such that, for each incoming packet,
it performs two simple operations, namely quantization and
truncation, which adjust the granularity of the flow’s frequency
distribution intervals in bins (quantization), and select the bins
considered to be the most relevant features for flow classification
(truncation). As shown in Figure 1, the set of resulting bins for
each flow constitutes the respective flow marker, which will
then be processed by the classification algorithm.

Second, we developed an automatic profiler to find adequate
quantization and truncation parameters of the FMA for a given
application. Because there is a large space of configurations that
present different trade-offs between switch memory savings
and flow classification accuracy, manually setting up these
parameters for each application would both be cumbersome and
render sub-optimal results. Our profiler relies on well-known
Bayesian optimization techniques [24] for finding suitable
configurations by iteratively testing only a small subset of
the possible FMA configurations. It can be tuned to find
parameterizations according to different criteria, including (a)
the maximization of a user-defined trade-off between space-
efficiency and accuracy, (b) the smallest marker able to achieve a
classification accuracy above a given threshold, or (c) the marker
that maximizes the accuracy given some space constraint.

We have implemented FlowLens on a Barefoot/Intel Tofino
programmable switch and evaluated our system in three use case
applications: covert channel detection, website fingerprinting,
and botnet detection. When comparing the classification scores
achieved by FlowLens against those computed over raw packet

0 250 500 750 1000 1250 1500
a) Raw Packet Size Bins

100

101

102

103

Pa
ck

et
 C

ou
nt

0 10 20 30 40 50 60 70 80 90
b) Quantized Bins (QL=4)

100

101

102

103

Pa
ck

et
 C

ou
nt

6 7 8 9 10 11 12 13 54 59
c) Truncated Bins (Top-10)

101

102

103

Pa
ck

et
 C

ou
nt

Figure 1. Histograms of packet size distribution for a single flow. A flow
consists of a stream of packets identified by the same 5-tuple of TCP/IP header
fields, at increasing degrees of compactness: a) the raw packet size distribution;
b) the quantized representation, where packet sizes are aggregated into bins of
size 24 bytes; c) the flow marker generated through truncation of the quantized
representation which comprises the most relevant 10 bins for the detection of
covert channels mounted through multimedia protocol tunneling.

length distributions, FlowLens offers similar accuracy scores
while using significantly less memory, e.g., covert channels
can be detected with at most 3% loss in accuracy using only
a 20-byte memory footprint per flow. When compared with
related methods for capturing compressed packet frequency
distributions [22, 55], FlowLens consistently outperforms them
in terms of the classification accuracy under similar memory
restrictions. FlowLens also achieves considerable bandwidth
savings when compared to network telemetry approaches [74]
that rely on a server infrastructure responsible for flow analysis.

II. MOTIVATION AND DESIGN GOALS

This section motivates our work by characterizing a set of
emerging ML-based security applications and discussing the
technical constraints of modern programmable switches. It then
provides an overview of FlowLens’s design goals.

A. ML-based Network Security Applications

In recent years, generalized interest has grown in detecting
atypical network flows using ML classification algorithms [58].
To deliver accurate flow classification results, these algorithms
depend on a range of features that require the collection of
the packet length/inter-packet timing frequency distributions.
Below, we present three examples of applications in the realm of
network security that rely on the analysis of such distributions
for performing traffic classification. These examples are chosen
to showcase the versatility of FlowLens in accommodating
different classification algorithms. We will further use them to
validate the classifiers’ accuracy when deployed on FlowLens.

Covert channel detection: Capturing packet distributions
makes it possible to detect covert channels, thereby providing
a valuable asset for cyberforensic investigations. To achieve
stealthy data transmissions, advanced covert channel tools tend
to obfuscate covert flows such that their high-level features (e.g.
packet lengths) resemble those of regular flows [81, 6, 38, 47].
However, recent work [7] has shown that these tools can be
defeated or severely weakened due to subtle differences in
packet distributions which can be detected by ML techniques.

Website fingerprinting: Privacy-enhancing technologies like
OpenSSL or OpenVPN allow users to hide the destination
address behind a proxy and the content of website visits from
external observers through the use of encryption. However,
it may still be possible to identify which sites they access
by collecting the flows’ packet length distributions [40, 29]
and feeding them to ML classification algorithms for website

2



fingerprinting purposes. This technique may help authorities
respond against individuals engaged in illegal activities.

Botnet chatter detection: Botnets [35] can jeopardize the se-
curity of multiple organizations, emerging as a highly profitable
activity for malicious actors [63]. Unfortunately, due to their
decentralized P2P architectures and stealthy communication
patterns, botnets have become incredibly resistant to takedown
attempts. Nevertheless, state-of-the-art approaches to analyzing
botnet traffic are able to identify the presence of bots through
the combined analysis of packet lengths and inter-packet timing
distributions of network hosts [48, 53]. Being able to employ
these techniques can help network administrators prevent and
mitigate botnet threats to an organization’s network.

B. Design Goals

In this work, our goal is to use programmable switches
to collect packet frequency distributions and provide a multi-
purpose flow classification platform for implementing a variety
of ML-based security applications. By using our solution, a
network operator will be able to scan local traffic in near real-
time and look for specific flows that match a set of application-
specific traffic patterns, such as those presented in Section II-A.
In summary, we are driven by the following design goals:

Scalability: We aim at monitoring flows in very large and
fast networks (at the Tbps scale), comprised of many switches,
while reducing the costs of the network telemetry infrastructure.
To this end, we aim to avoid relying either on edge-based
solutions, which capture the traffic through middleboxes [61], or
solutions that collect packet features on the switches but offload
them for further processing and classification on dedicated
servers [73, 74]. Reducing the bandwidth consumed with the
offloading of telemetry data is also a crucial point as the amount
of collected data grows with the increasingly high link speeds
and becomes substantial for large scale networks [87].

Accuracy: We aim at collecting a compact representation of
packet distributions while retaining enough information about
flows to enable high accuracy on classification tasks. Achieving
such a representation requires the design of a flow compression
scheme that is simple enough to be efficiently implemented by
the primitives available in current P4-programmable switches,
but which is able to retain meaningful features for classification
purposes. Additionally, computing compact representations
of packet distributions should not consume the majority of
resources in the switch, enabling the system to co-exist with
other typical applications, e.g. forwarding, or to be used in
tandem with complementary network telemetry solutions.

Availability: Re-purposing our system to different traffic
analysis tasks should not involve the deployment of a new
P4 program. This is because deploying a new program involves
a scheduled downtime during which the switch will be unable
to perform its basic functions, causing service disruptions.

C. Constraints of Modern Programmable Switches

To efficiently collect and process packet distributions, we
explore the programming capabilities of modern switches, such
as Barefoot Tofino [4] and Broadcom Tomahawk II [14]. These
switches include two types of processors which operate in two
different planes of the network architecture. On the data plane,

Ingress PipelineProgram
m

able Parser

Egress Pipeline

Egress Interface

Ingress Interface

Traffic M
anager

Stage 1 Stage n
Program

m
able D

e-parser

...
M1.3 A1.3

M1.2 A1.2

M1.1 A1.1

Mn.3 An.3

Mn.2 An.2

Mn.1 An.1

Memory
Cluster 1

Memory
Cluster n

Stage 1 Stage n

...
M1.3 A1.3

M1.2 A1.2

M1.1 A1.1

Mn.3 An.3

Mn.2 An.2

Mn.1 An.1

Memory
Cluster 1

Memory
Cluster n

Figure 2. Protocol Independent Switch Architecture (PISA).

forwarding ASICs are able to quickly forward and perform
simple computations on packets at line-rate, thus enabling the
analysis of billions of packets at the Tbps scale. On the control
plane, CPUs can be used for general-computing tasks such as
controlling the packet forwarding pipeline, or for exchanging
data with the ASIC through DMA.

Switching ASICs can be programmed in a hardware-
independent language, such as P4 [12]. Figure 2 illustrates
the architecture of our targeted switching ASIC: the Protocol
Independent Switch Architecture (PISA) [18]. Packets arrive at
the switch ingress interfaces and, after parsing, are processed by
two logical pipelines of match+action units (MAUs) arranged
in stages. Packet headers along with packet metadata may then
match (M) a given table, triggering further processing by the
action (A) unit associated with the matching table’s entry. These
actions may modify packet header fields and change persistent
state (e.g., increment a counter in stateful memory). Tables and
other objects defined in a P4 program are instantiated inside
MAUs and populated by the control plane at run-time.

Memory constraints: Several constraints in the memory
architecture of switching ASICs may restrict the layout of
the data structures that can be used by P4 programs. These
ASICs are equipped with two high-speed types of memory: (i)
TCAM, which is a content addressable memory suited for fast
table lookups, such as for longest-prefix matching in routing
tables [89], and (ii) SRAM which enables P4 programs to persist
state across packets (e.g., using register arrays), and to hold
exact-match tables. Unfortunately, switching ASICs contain
a small amount of stateful memory (in the order of 100MB
SRAM [51]), and only a fraction of the total available SRAM
can be used to allocate register arrays. Moreover, accessing all
available registers can be a complex task since the registers
in one stage cannot be accessed at different stages [19]; this
is because the SRAM is uniformly distributed amongst the
different stages of the processing pipeline (see Figure 2).

Processing constraints: The P4 programs installed on the
switch must also use very simple instructions to process packets.
To guarantee line-rate processing, packets must spend a fixed
amount of time in each pipeline stage (a few ns [70, 69]) which
restricts the number and type of operations allowed within each
stage. Multiplications, divisions or floating-point operations,
and variable-length loops are not supported. Moreover, each
table’s action can only perform a restricted set of simpler
operations, like additions, bit shifts, and memory accesses that
can quickly be performed while the packet is passing through
an MAU without stalling the whole pipeline [71].

III. SYSTEM OVERVIEW

This section describes FlowLens, a system for efficient flow
classification that achieves the aforementioned goals. Figure 3
shows the architecture of FlowLens, illustrating how it can

3



Switch

Client

Profile

Automatic	
Profiler

FMA	Parameters:
QL=4,	TL=10

Profiler	ServerTraining Dataset

Classifier

Classifier

Flows

CPU
ASIC

FMA
P4	Program

Network

Model

Profile

Classification
Results

Collector

Figure 3. FlowLens architecture and components.

be used to monitor traffic on a single switch of a high-speed
network. In general, it can be deployed across multiple other
switches in the network at the system operator’s discretion.
FlowLens consists of the following components: a P4 program
and two software components (collector and classifier) running
on the switch, a standalone profiler server, and a software client
that provides an interface to the system operator.

Taken together, the components running on the switch are
responsible for analyzing traffic and classifying flows as per
ML-based security application. The P4 program runs on the
data plane, and implements a tailor-made data structure named
Flow Marker Accumulator (FMA). The FMA is used to collect
concise encodings of the packet length or inter-packet timing
distributions of flows named flow markers. Essentially, the FMA
implements the necessary knobs for fine-tuning the memory
savings and the classification accuracy of the system. It can
accommodate the restrictions of the switch and generate flow
markers at different compression levels by carefully adjusting
a set of configuration parameters that control (i) the size of the
memory footprint allocated per-flow marker, and (ii) the loss
of information in the flow markers due to compression.

Running on the local CPU of the switch, two additional
FlowLens software components implement several control plane
functions. The collector is responsible for loading the P4
program, configuring the FMA data structures in the forwarding
pipeline, initiating the flow collection process, and collecting the
resulting flow markers. The classifier runs the ML algorithms
responsible for classifying flows based on the collected markers.
FlowLens can generally employ any ML algorithm that can
reason over flow markers, and whose memory and compute
requirements can be accommodated on the switch control plane.
After the classification step, results can be downloaded by the
client and displayed to the system operator.

Since the classifier and the FMA configuration parameters
depend on the application domain, FlowLens uses a standalone
profiler to pre-configure the classifier models and FMA param-
eters (i.e., the application profile) onto the switch. The system
workflow involves two phases: profiling and flow classification.

1. Profiling: FlowLens needs to be pre-configured by the system
operator for specific applications. This operation involves the
profiler server, which can automatically create profiles by using
an application-specific classifier and a training set containing
labeled flow samples provided by the system operator. To this
end, the profiler runs an optimization process that explores the
classification performance of different FMA quantization and

truncation values, generating a configuration according to a
given user-defined criterion (see Section V).

2. Flow classification: As soon as the P4 program has been
loaded into the switch (which happens only once when boot-
strapping FlowLens), the collector takes the profile computed
in phase 1 for a specific application, e.g., website fingerprinting,
and configures the FMA accordingly. Afterward, the switch
can start to process packets and compute flow markers. The
collector then fetches the resulting flow markers from the data
plane and the classifier processes them based on the loaded
model. The classifier results can be retrieved by the system
operator, who can then take targeted actions about particular
flows such as dropping flagged flows or scheduling further
logging operations. The system operator can later reconfigure
the system for other ML-based application profiles without the
need to re-deploy the P4 program.

In the following sections, we present the relevant design de-
tails of FlowLens, namely the FMA data structure (Section IV)
and the automatic profiling scheme aimed at choosing markers
with good accuracy/memory saving trade-offs (Section V).

IV. FLOW MARKER ACCUMULATOR

The Flow Marker Accumulator (FMA) is the data structure
responsible for computing flow markers on the switch data plane.
Next, we present its internal operations by describing the FMA
design for capturing markers of packet length distributions,
and presenting the main changes when computing inter-packet
arrival timing distributions. Then, we describe how the FMA is
used by the control plane, and discuss alternative FMA setups.

A. Collecting Packet Length Distributions

To generate flow markers, the FMA provides two basic
operators that can be implemented efficiently and be used to
obtain a space-efficient encoding of a packet length distribution:
quantization and truncation. Quantization consists of counting
packet lengths in coarse bins that represent ranges of contiguous
packet lengths. Truncation further trims the number of bins
that need to be reserved for a certain classification task. These
operators allow us to selectively collect the bin values which, in
many cases, correspond to the most relevant features employed
by the ML engine to yield accurate classifications [84, 7].

To perform these operations, the FMA is composed of
several data structures shown in Figure 4. They consist of two
match+action tables and one register array: the flow table, the
truncation table, and the register grid, respectively. The register
grid is a matrix of memory registers. Each line is used to store
a flow marker. The index of each line (flow offset) is used
to address the flow marker. Internally, a flow marker consists
of a number of cells in a register (the grid’s columns). These
cells play the role of bins for storing samples of the flow’s
packet length frequency distribution. The flow table maps the
monitored flows against the respective flow markers in the
register grid. The truncation table identifies the bin that must
be incremented for every incoming packet.

Next, we describe in detail the procedure for updating the
flow marker for a given incoming packet. Consider the example
shown in Figure 4, where an input packet arrives in the switch

4



from source IP 162.2.13.42, source port 41065, with length
1024 bytes. The FMA performs the following four operations:

1. Lookup: First, the FMA’s flow table matches the incoming
packet with the corresponding flow ID, which is a 5-tuple of
header fields 〈IPsrc,Portsrc, IPdst,Portdst,Proto〉 that is used as
lookup key to return its associated flow offset. To be efficiently
performed, we leverage the match+action units of the switch to
accommodate specific rules for flow table indexing. Each rule in
the flow table assigns a unique flow offset to each flow ID. For
instance, in the running example, the input packet is matched
against the rule 〈162.2.13.42, 41065, 146.3.18.71, 80, 6〉 → 0.
(Section IV-C describes how the flow table is populated.)

2. Quantization: The flow offset determined above locates
the packet’s flow marker in the register grid. Next, the FMA
must increment the correct bin in the flow marker which is a
function of the packet length. The first step to determine the
right bin involves quantization, which aggregates, and so counts,
a range of contiguous packet lengths into the same bin. To avoid
complex instructions unsupported by the switch hardware (e.g.,
multiplications), the bin indexed by a certain packet length PL
is computed by bin(QL,PL) = length(PL) >> QL, where QL
denotes the quantization level and 0 ≤ QL < log2(PLmax). For
efficient lookup of a packet length’s bin, FMA uses power-
of-two bin sizes; this allows for computing the packet bin by
right-shifting the packet length value by QL number of bits.
In the shown example, applying QL = 4 to the packet length
(1024 bytes) yields quantization bin #64.

3. Truncation: Based on the obtained quantization bin, trun-
cation leverages an auxiliary data structure – the truncation
table – which contains match+action rules exclusively for the
bins that should be accounted for in the flow marker. Each rule
is keyed by the quantized bin length, i.e., bin(QL,PL), and
indexes the flow marker’s bin (bin offset) where the packet
length frequency must be recorded. If no such rule exists
for a given quantized bin, the packet is not counted. In this
example, the current packet is considered because a rule exists
for the packet’s quantized bin (#64). In contrast, packets whose
quantized bin values fall, e.g., within the bin range 52-63,
will not be accounted for. This strategy allows for selectively
filtering the most meaningful bins for flow classification.

4. Increment: Lastly, by combining the flow offset and the
bin offset, the register grid can be indexed and the correct bin
incremented. In the running example, this entails incrementing
bin 2 of the flow marker pointed to by the flow offset 0. These
steps are repeated for every incoming packet.

B. Collecting Packet Timing Distributions

Gathering inter-packet timing distributions requires only
minor modifications to the FMA design. This task does not
affect the main FMA data structures and operators, but it
requires additional resources in the switch processing pipeline.

To compute the arrival time difference between two consec-
utive packets of the same flow, the FMA stores the timestamp
of the last packet seen per each flow. That information is
available to the P4 program through device intrinsic metadata.
With exception to the first packet of a flow, FMA computes the
difference between the current packet timestamp and the last
timestamp observed for that particular flow. That value can then

src_ip
162.2.13.42

...

Flow Table

0

FTS-1

src_port flow_offset
41065 0

162.2.15.48 38234 1
... ...

Register Grid
14 2 56 ...
... ... ... ...

0

RGS-1

Flow Marker Bins (FMB)

quant_pkt_sz

Truncation Table

43

64

0000	0000	0100	0000	0000

0000	0000	0000	0100	0000

Bin	=	64

PL	=	1024 PL	>>	QL:4

...

Quantization

Input Packet

packet_length	=	1024

bin_offset
0

2
...

0

94 FMB-1Binmax

26
...51 1

dst_ip
146.3.14.71

...

dst_port
80

146.3.18.23 38943
...

proto
6
17
...

src_ip	=	162.2.13.42				dst_ip	=	146.3.18.71
		src_port	=	41065										dst_port	=	80

proto	=	6

Figure 4. FMA internals: Flow Table, Truncation Table, and Register Grid.

be processed by the same quantization and truncation operators
described for packet lengths, which produce the corresponding
bin to be updated in the register grid.

C. Usage of the FMA by the Control Plane

To monitor flows on a switch, the FMA must be coordinated
by the control plane’s collector software. The collector prede-
fines the FMA’s quantization and truncation parameters, and
determines: i) which amongst all flows traversing the switch at
a given time will be monitored by the FMA, and ii) for how
long the packets of the monitored flows will be considered in
the respective flow markers. Next, we present the default FMA
operational settings and then describe alternative customization
policies that can be enabled by the FlowLens operator.

Default FMA measurement operations: By default, the
control plane sets up the FMA to i) compute flow markers for
all the flows on a first-come, first-served (FCFS) basis until
they exhaust the register grid capacity, and ii) measure the
flows’ respective packets for a predefined time interval that
we refer to as collection window. The control plane starts by
clearing all registers of the FMA’s register grid, and setting a
timer for the duration of the collection window. Then, for every
incoming packet for which a rule does not exist in the FMA’s
flow table (i.e., the packet belongs to a new flow), the control
plane automatically installs one of two possible rules for that
flow. If there is free space in the register grid, then it will install
a new rule that points to a free flow marker, allowing the flow
to be monitored by the FMA. Otherwise, if the register grid
is full, the control plane will install a single wildcard ignore
rule (featuring a reserved offset value) instructing the FMA
to ignore that flow and all subsequent flows until the end of
the collection window. When the timer expires, the control
plane reads in batch all the computed flow markers. To prevent
concurrent updates while reading, the control plane deletes the
flow rules prior to reading the registers. Once the registers have
been read, a new collection window round can then ensue. A
side effect of this design is that FlowLens may skip the packets
of a new flow until the flow’s respective rule is installed in the
switch. However, while this is a limitation of our system, such
loss does not impair FlowLens’s ability to trace most typical
flows as they tend to last longer than a few milliseconds.

Discretionary flow monitoring: Prior to the enforcement of
the FCFS flow marker allocation strategy, it is possible to filter
which traffic should be monitored and therefore limit the amount

5



of flows to inspect. For instance, ML-based security applications
are frequently focused on traffic that can be identified by
common target ports (e.g., HTTP). In other cases, the FlowLens
operator may be interested in monitoring flows based on IP
or network address ranges. Such a discretionary flow filtering
stage can be implemented on the control plane by installing
ignore rules for all uninteresting flows based on allow / deny
policies provided by the FlowLens operator. Ignore rules can be
defined to target a single flow or to perform wildcard matching
based on IP and port ranges, specific protocol fields, etc.

Fine-tuning of the collection window: Flow markers should
not linger for an arbitrarily large amount of time inside FMA’s
data structures, as this would prevent the flow marker’s memory
from being used for other flows. To increase the number of flows
that can be monitored at any given time, the collection window
can be configured, based on three setups: i) the definition of
a fixed window duration (explained above); ii) the use of a
specific flag set in FMA data structures that enables the control
plane to check for flow termination through a polling procedure;
iii) a hybrid of both approaches. While option i) is arguably
the simplest alternative, it may lead to memory waste since
short-lived flows can occupy the FMA’s data structures longer
than necessary. In contrast, a polling approach allows FlowLens
to pinpoint flows that will receive no new packets (e.g., after
detecting FIN packets in the data plane pipeline which signals
the termination of a TCP connection), but it may indefinitely
keep flows which termination is not explicit (e.g., UDP-based
multimedia flows). Thus, a hybrid collection approach allows
us to proactively read and reset the FMA data structures in
use by terminated flows while preventing long-lived flows to
be monitored indefinitely. In other words, this approach fully
refreshes the register grid every time the collection window is
over and partially updates it whenever a particular row is in
condition to be evicted.

Flow marker eviction: A high rate of new flows may saturate
the capacity of the FMA data structures and prevent storing
flow markers for all flows crossing the switch. In this case,
as explained above, the FMA’s default strategy is to not track
new flows as long as existing flows are still being tracked. As
an alternative behavior, it is possible to evict flow markers
from the FMA according to an LRU policy. In this case, the
control plane keeps track of the oldest flow markers stored by
the FMA, and replaces them as new incoming flows cross the
switch. The most suitable policy will greatly depend on the
expected workload and topology of the network.

D. Distributed and Orchestrated FMA Operation

So far, we explained several design decisions of FlowLens
when considering its operation to be contained within a single
switch. In this section, we describe how FlowLens can benefit
from a deployment in multiple vantage points.

Scaling the number of measured flows: Although the number
of flows whose state can be kept by a single switch is limited,
it is possible to take advantage of multiple vantage points in the
network for monitoring a larger amount of flows. This is akin
to the operation of other measurement frameworks [43, 31] and
may be accomplished, for instance, by splitting packets coming
from different IP address spaces between existing switches in
the organization’s network infrastructure.

Increasing collection coverage: In the case that our system
operates with a maximum collection window (see Section IV-C),
reading and resetting FMA’s data structures requires a non-
negligible amount of time (a few seconds) [36]. This may
prevent FlowLens from collecting flow information while these
operations take place. To ensure visibility over the network
traffic crossing an organization, FlowLens can be deployed in
a cascade fashion across an additional switch to intertwine the
collection windows of the different switches.

Increasing application coverage: The design of FlowLens is
tailored for enabling a single profile to be loaded into a given
FMA at any given time. However, a coordinated operation
of FlowLens across several switches can provide support to
multiple ML-based security applications. For instance, when
deployed across multiple switches, one FMA instance may be
dedicated to the detection of covert channels, while other is
dedicated to the identification of botnet behavior.

V. AUTOMATIC PROFILING

The flow markers generated by FMA depend on the
parameters, i.e., the quantization level and the truncation table,
dictated by an application-specific profile which determines how
efficiently the switch SRAM will be used and how accurate the
flow classification will be. In general, finding the parameters that
offer an optimal trade-off would require an exhaustive search
of the parameter space. Unfortunately, this is a cumbersome
task that requires non-trivial computational resources and time,
e.g., automatically exploring the full space of configurations
for the botnet detection task (Section VII-F) took one day.

To search on the parameter space for a configuration
that offers a good trade-off between flow marker size and
classification accuracy, the profiler implements optimization
techniques that, albeit may fail to yield the optimal result,
usually find near-optimal solutions quickly. Next, we describe
the optimization criteria and algorithm employed in FlowLens.
Note that FlowLens is not tightly coupled to a specific
implementation of the profiler and nothing prevents the use of
alternate optimization techniques [72, 9]. Investigating further
optimization approaches is outside the scope of this paper.

A. Optimization Criteria

We expect that a FlowLens’s operator will want to find
a suitable FMA parameterization for any given ML-based
security application. Because there is a space/accuracy trade-
off in the FMA configuration, we are faced with a multi-
criteria optimization problem that does not have a single
optimal solution but, instead, has a number of Pareto optimal
solutions [57]. The current version of the FlowLens’s profiler
can approximate three different pre-set points in the Pareto
frontier, that can be selected by the system operator:

1. Smaller marker for target accuracy: In this mode, the
system operator specifies a target accuracy value to be attained,
and the profiler automatically chooses the quantization and
truncation parameters that yield the smallest marker that is
able to offer the target accuracy. Note that the profiler will not
return a configuration if the accuracy set by the user cannot
be achieved for the particular dataset under analysis.

6



2. Best accuracy given a size constraint: Here, the system
operator specifies the maximum size for the flow marker and
the system automatically picks the quantization and truncation
parameters that maximize the classification accuracy, among the
configurations explored, without exceeding the target marker
size. This constraint also allows us to reduce the search space,
since the marker size generated by a set of quantization and
truncation parameters is known beforehand.

3. Size vs. accuracy trade-off: Lastly, the profiler can work in
a fully automated fashion. In this case, the profiler attempts to
maximize an accuracy vs marker size trade-off that is expressed
by the following reward function: reward = α · accuracy +
(1− α) 1

marker size . A smaller α attributes less importance to the
accuracy in favor of compactness, and vice-versa. Our prototype
uses α = 0.5, but the system operator can define the value of α
as well as a different reward policy of its choosing altogether.

B. Optimization Algorithm

The search space is the product of the different quantization
and truncation configurations; on its own, the number of
configurations that result from truncation is combinatorial with
the number of available bins. To guide the profiler’s search, we
use an optimization algorithm that consists of two phases. In
the first phase, called search space reduction, we use domain
knowledge to narrow the search, by excluding configurations
that are unlikely to offer acceptable results. In the second
phase, we resort to Bayesian optimization to find a suitable
flow marker. We detail these two steps in the next paragraphs.

1. Search space reduction: To reduce the search space, we
discretize the domain of quantization parameters, e.g., aggregate
bins in powers of two. Then, we leverage a pre-training step
for narrowing the truncation space: we first generate a coarser
representation of the packet distributions of each sample in
the training data according to a given quantization parameter,
then we use a classifier to build a model based on these
representations. We leverage the fact that most classifiers can
output information regarding the top-N most relevant bins for
accurate classification. Thus, for each quantization, we constrain
the exploration to points that include an increasing number of
features from the top-50 (i.e., the configuration that includes
only the top-10 bins, the top-20 bins, etc). When the classifier
is unable to output the top-N features, we fall back to a simpler
strategy to narrow the search space: we sample the input space,
exclude bins that have not been observed in the sampled points,
and feed the remaining ones to the Bayesian optimizer.

2. Bayesian optimization: To reduce the manual labor re-
quired to explore a large space of configurations, we rely on
Bayesian optimization, which is a well-known method for
optimizing black-box functions and for finding near-optimal
solutions with few function evaluations [24]. We optimize the
combination of quantization and truncation parameters using
the Python Hyperopt [10] software package. In each iteration,
the profiler selects a parameterization, trains a classifier using
flow markers accordingly generated, and records the classifier
accuracy alongside the size of produced flow markers. The next
parameterization to sample is selected by the optimizer which
we run for a fixed number of iterations. The whole process
took us a few hours to complete.

Stage 1

FlowID = <162.2.13.42, 6901, 147.6.54.129, 3478, 17>
packet size = 512

Match

Quantization
QL = 5

Stage 2

Truncation

Stage 3

FT1

Stage 4

17 3 8 22

RG1

FT2

Stage 5

16 4 11 23
0 15 4 1210
1 0 0 00

RG2

FT3

Count

...

md.binIndex_quant
= 16

md.bin_offset
= 1

md.trunc_flag
= 1

flow_offset
= 10

md.rg_cell_offset
= 11

Figure 5. FMA implementation on Tofino switch. Each partition of the flow
table (FTm) records flow ids (marked in orange) and their corresponding
flow markers are recorded in the register grid partition of the upcoming stage
(RGm). This packet is matched in FT2 and the respective flow marker updated
in RG2. The white boxes in the bottom indicate the metadata values computed
in each stage; the value in the blue box is loaded by the control plane.

VI. IMPLEMENTATION

We built a prototype of the FlowLens system. Excepting
the FMA, which was written in P4, we implemented all
other components in Python. The classification engine of
the profiler server uses Python’s scikit-learn [62] and the
Weka [28] libraries. We implemented FlowLens’s FMA [8] for
a Barefoot Tofino ASIC [4] using about 500 lines of P416 code,
which was compiled with the P4 Studio Software Development
Environment (SDE) [5]. While the FMA’s design presented in
Section IV-A is generically compatible with PISA architecture,
its implementation required careful reasoning due to the specific
intricacies of currently available switching hardware.

To implement the FMA code for a Tofino switch, we need
to fit the FMA’s data structures and operations into the specific
pipeline and compute capabilities of the switch. To implement
flow marker updates, it would be desirable to compute the flow
offset and the bin offset of the target flow marker (see Figure 4)
in a single pipeline stage to be able to use all the memory in
upcoming stages to store flow markers. However, this cannot
be achieved on our target hardware due to three major data
dependencies: i) matching (i.e., indexing) the truncation table
depends on the quantized packet length, but quantization and
truncation are too complex to be realized together in a single
stage; ii) indexing a flow marker’s bin requires the result of
truncation, but the truncation table and the flow table cannot be
matched in the same physical stage; iii) matching the flow table
and updating the respective flow marker are also too complex
to perform in a single stage. Moreover, it is not possible to
access all the switch memory from a single stage.

Laying out the FMA in hardware: To accommodate for
the above requirements, we split the functioning of FMA
across different stages, as depicted in Figure 5. To resolve
dependencies i) and ii), we reserve the first and second stages
of the pipeline to perform quantization and truncation. Then,
we partition the flow table and register grid along the remaining
stages to use up all the per-stage stateful registers across the
processing pipeline. To overcome the inability to calculate the
bin offset and increment the corresponding register cell in the
same stage – dependency iii) – the flow table partitions and
register grid partitions are placed in contiguous stages. Each
flow table partition is responsible for managing flow markers
in its corresponding register grid partition.

7



Figure 5 depicts in detail the operation of FMA when a
packet for a new flow arrives. Notation FTm and RGm denote
partition m of the flow table and register grid, respectively.
Assume that the collector has installed a rule for flow id
〈162.2.13.42, 6901, 147.6.54.129, 3478, 17〉 in FT2, and that
the first incoming packet for this flow has a size of 512B. In
stage 1, action quantization act is triggered, quantizing the
packet length using QL=5 and setting the resulting quantized
packet length (md.binIndex quant) to 16. The object md stores
the metadata carried over across the pipeline stages.

In the second stage, the truncation table matches against
the quantized packet length (refer to Figure 4) and trig-
gers the truncation act action, which returns the bin offset
md.bin offset within the flow marker and sets a truncation flag
md.trunc flag in order to inform the downstream stages that
this packet’s corresponding flow marker should be incremented.
In case no match exists in the truncation table, the truncation
flag is not set, and the packet is not accounted for.

Next, since the flow matching rule is not installed in FT1,
the packet is not matched until it reaches stage 4, where
FT2 is located. Upon matching the flow id and verifying
that md.trunc flag is set, the set flow data act2 action is
triggered. This action computes md.rg cell offset by adding
md.bin offset and flow offset loaded by the control plane
into FT2. The resulting value is used to index a cell in RG2

which is then incremented. To index the correct partition of the
register grid, we use control flow logic to test which flow table
partition was matched, triggering the respective reg grid act2
action that updates the flow marker on the corresponding register
grid partition in the next pipeline stage.

Optimizing per-packet computations: To reduce the com-
plexity of the P4 program, we leverage the capabilities offered
by the control plane to offload the computation of complex
operations from the data plane. This results in a program
sampled in Listing 1 which implements four simple actions
that can be performed within single stages of the pipeline.
Specifically, we offload two operations into the control plane:

a) Computing a flow offset within the register grid: The index
of the register grid where a flow marker is located can be easily
calculated in the control plane. Since the FMA parameterization
is known prior to the loading of the P4 program on the switch,
the control plane can compute the number of bins used by a
flow marker in a given configuration. Thus, when a new flow
is matched, the collector installs a rule where the flow offset is
given by the number of flow rules installed in a particular flow
table partition times the number of bins composing a marker.
Upon matching, the flow offset is passed as an argument to
action set flow data act2 (line 14).

b) Computing a bin offset within a flow marker: To index
a bin within a flow marker two values must be added: the
flow offset, and the bin offset. While the former can be
computed as described in the previous paragraph, the latter
is computed by the truncation operator. The quantized packet
length passed as an argument to the action responsible for
performing truncation (truncation act, line 8) is computed
by action quantization act (line 3) using a simple bit shift.
Then, the translation between a quantized packet length and the
corresponding bin offset can also be computed offline once a
specific FMA parameterization is known, and later loaded by the

1 // triggered by the quantization table
2 // bin_width_shift depends on the Quantization Level (QL)
3 action quantization_act(bit<32> bin_width_shift){
4 md.binIndex_quant =
5 (bit<32>) (md.pkt_length >> bin_width_shift);
6 }
7 // triggered by the truncation table
8 action truncation_act(bit<32> new_index, bool flag) {
9 md.bin_offset = new_index;

10 md.trunc_flag = flag;
11 }
12 //triggered by the flow table (FT_2)
13 // compute the offset of the bin in the RG partition
14 action set_flow_data_act2(bit<32> flow_offset) {
15 md.rg_cell_offset = flow_offset + md.bin_offset;
16

17 //triggered after matching the flow table (FT_2)
18 action reg_grid_act2() {
19 bit<16> value;
20 reg_grid2.read(value, md.rg_cell_offset);
21 reg_grid2.write(md.rg_cell_offset, value+1);
22 }

Listing 1: P4 code fragment that implements the actions performed per-
packet by the FMA. The complexity of the truncation operator and of the
computation of flow marker offsets is offloaded to the control plane and the
resulting values are loaded through MAUs.

control plane into the truncation table (refer to Section IV-A).
Pre-computing these values in the control plane saves stateful
memory and pipeline’s stages for either monitoring more flows
or executing other forwarding behaviors.

VII. EVALUATION

Here, we present our experimental evaluation of FlowLens
aimed at analyzing the accuracy of ML-based flow classification
tasks and the efficiency of the switch resources usage.

A. Metrics and Methodology

Our experiments aim at identifying a particular class of
flows denoted as the target class. For instance, when using
FlowLens for covert channel detection, the target class can
be covert traffic. We assess the quality of FlowLens using
the following set of metrics: accuracy, i.e., the percentage of
flows that were correctly classified in their class, false positive
rate (FPR), i.e., flows that do not belong to the target class
but were erroneously classified as part of the target, and false
negative rate (FNR), i.e., flows of the target class that were
flagged as not belonging to the class. We also resort to related
metrics such as precision – ratio of the number of relevant
flows retrieved to the total number of relevant and irrelevant
flows retrieved – and recall – ratio of the number of relevant
flows retrieved to the total number of relevant flows.

We train our system to be able to identify specific target
class flows within the context of three usage scenarios:

Covert channel detection: We train our system to identify
Skype flows carrying covert channels encoded by two cen-
sorship resistance tools: Facet [38] and DeltaShaper [6]. We
train two independent FlowLens applications, for Facet and for
DeltaShaper traffic, using a balanced dataset including covert /
legitimate samples of recorded flows. The traffic is classified
using the XGBoost [7] classifier, based on the packet length
distribution of the sampled flows.

Website fingerprinting: We train a second FlowLens applica-
tion to identify webpages browsed through encrypted tunnels.

8



Table I. SCALABILITY OF FLOWLENS.

Use Case FMA Configuration Marker Raw Dist. Scaling

Covert Channels 〈QLPL=4, Top-N=10〉 20B 3000B 150×
Website Fgpt. 〈QLPL=5〉 94B 3000B 32×
Botnet Detection 〈QLPL=4, QLIPT =6〉 302B 10200B 34×

We leverage the dataset made available by Herrman et al. [29].
This dataset has been widely used for the evaluation of novel
website fingerprinting techniques [93, 60], and it contains traces
of webpage accesses over OpenSSH. Websites are fingerprinted
resorting to the Multinomial Naı̈ve-Bayes classifier [29], which
leverages the packet length distribution of the incoming and
outgoing data in a connection as features. This classifier
also allows us to illustrate how FlowLens can accommodate
alternative truncation schemes whenever a given classifier does
not return a ranking of feature importance (Section VII-E).

Botnet detection: Our last FlowLens application aims at
detecting the presence of botnet chatter among legitimate P2P
traffic. We use the dataset produced by Rahbarinia et al. [64],
which comprises traffic flows produced by four benign P2P
applications (uTorrent, Vuze, Frostwire, and eMule), and two
P2P botnets (Waledac and Storm). Malicious flows can be
identified by analyzing packet length and inter-packet timing
distributions resorting to a Random Forest classifier [64].

We simulate the classification of flows of a given target
class in software based on a set of application-specific flow
samples. We also configured all the classifiers (Multinomial
Naı̈ve-Bayes, XGBoost, and Random Forest) to use the same
hyperparameters suggested by the papers we drew our use-cases
from. Throughout the evaluation, we assess the performance of
different FlowLens configurations while exposing the system
to a workload that, to the best of our abilities, mimics those
described in the literature. However, we highlight the adoption
of a single holdout test instead of the cross-validation approach
employed in other representative works [7, 53]. The reason is
that, when applying truncation (Section-IV), FlowLens employs
a pre-training step to obtain a feature ranking from the classifier.
Then, it uses the top-N most important ones to fill the Truncation
Table (Figure-4). Since cross-validation returns an average of
the results obtained by multiple holdout models trained with
different splits of the dataset, the resulting top-N features would
not directly translate to be the top-N ones found in a particular
model instance, namely in the model to be deployed on the
switch for classification. Further, we chose a 50/50 holdout to
increase the amount of unseen (test) data and better assess the
generalization ability of the classifier.

B. Overall Performance

To give a general insight into the performance of FlowLens,
Table I presents the scalability gains of our system when it
is used to classify flows for covert channel detection, website
fingerprinting, and botnet traffic detection while displaying an
accuracy loss of at most 3% when compared with the use of
complete packet frequency distributions. For these experiments,
we generated the possible combinations of flow markers for
the three considered use case scenarios, and assessed whether
they allow for accurate flow classification despite their compact
size. Packet lengths (PL) vary from 1 to 1500 bytes (MTU),
and each cell of a flow marker has a size of 2 bytes.

Table II. HARDWARE RESOURCE CONSUMPTION.

Resources Computational Memory
eMatch xBar Gateway VLIW TCAM SRAM

Usage 8.46% 5.21% 3.39% 0.00% 38.54%

These results show that, when the quantization and trunca-
tion parameters are properly fine-tuned (i.e., QL and truncation
table), FlowLens can monitor at least 32 times more flows
when compared to the baseline setup without compression, i.e.,
QL=0 and truncation disabled. Our system can also reach a
150 fold increase in its monitoring capacity when detecting
covert channels. This is achieved for QL=4 and by selecting
the top-10 most relevant bins for truncation. In this case, with
a flow marker as small as 20 bytes, FlowLens manages to
achieve a classification accuracy of 93%, only 3% shorter than
the result obtained using raw packet length distributions. For
website fingerprinting, the flow marker is larger (94 bytes)
because we face a multi-class classification problem – different
websites are better classified resorting to different bins. Thus,
the truncation table is configured to map all quantized packet
lengths. Lastly, for botnet chatter detection, we combine the
quantization of packet inter-arrival time distribution (IPT) with
the PL distribution. In this case, we achieve a marker size of
302 bytes which enables the bookkeeping of >30× flows.

In general, the absolute number of flows that FlowLens
can handle ultimately depends on the switches’ available
SRAM. The NDA we have signed with Tofino prevents us from
disclosing the amount of switch memory but other sources [51]
reveal that current switches feature hundreds of MBs of SRAM.

C. Hardware Resource Efficiency

To evaluate the efficiency of FlowLens’s hardware resource
usage on the switch, we focus independently on the data plane
and on the control plane. As for the data plane, Table II shows
the average hardware resource consumption of FlowLens across
all stages of the switch. The table shows that besides the
SRAM required for the tables and register, the consumption
of other resources is negligible. Since our flow matching logic
entirely relies on exact matching, the FMA’s flow table does not
consume any of the TCAM resources on the switch. In tandem
with the deployment of flow tables in SRAM, FlowLens leaves
over 60% of SRAM available. Overall, these results suggest that
FlowLens makes enough room for the concurrent execution of
many other common forwarding behaviors, like access control,
rate limiting or encapsulation, that do not necessarily require
an extensive use of the stateful memory in the switch pipeline.

On the control plane, the switch has sufficient resources
to fit all models used by FlowLens and to readily classify
flows. In particular, the botnet chatter detection is our largest
model, occupying only 140MB of memory, and 5.6MB of
storage when compressed. In contrast, the model for covert
channel detection uses only 64KB of memory and 24KB of
storage. All these models comfortably fit within the control
plane hardware resources, which has 32GB available RAM.
Additionally, the flow classification step is very fast in all cases.
For covert channel detection, once the flow markers have been
collected from the data plane, the median of the time it takes
for the classifier to output a label for a sample flow ranges
approximately from 100 to 200 microseconds on the switch’s

9



0 2 3 4 5 6 7 80.0
0.2
0.4
0.6
0.8

1
Fa

ce
t

0.96 0.96 0.95 0.92 0.88 0.85
0.74 0.72

0.04 0.04 0.04 0.07 0.10 0.12 0.17
0.31

0.04 0.04 0.05 0.08
0.15 0.18

0.36
0.25

Acc
FPR
FNR

0 2 3 4 5 6 7 8
Quantization Level (QL)

0.0
0.2
0.4
0.6
0.8

1

De
lta

Sh
ap

er

0.87 0.89 0.84 0.86 0.88
0.81 0.77

0.71

0.17 0.17 0.19 0.16 0.13 0.18
0.25 0.27

0.08 0.05
0.12 0.11 0.11

0.19 0.21
0.32

Acc
FPR
FNR

Figure 6. Accuracy, FPR, and FNR for multimedia protocol tunneling
detection when using quantized packet length distributions.

Table III. FLOW MARKER SIZE FOR DIFFERENT QUANTIZATION LEVELS.

Bins and Memory Quantization Level (QL)
len(1 bin) = 2 Bytes 0 2 3 4 5 6 7 8

Number of Bins 1500 375 188 94 47 24 12 6
Memory per Flow(B) 3000 750 376 188 94 48 24 12

Intel Broadwell 8-core general-purpose CPU operating at 2
GHz. These results indicate that flow classification can be
efficiently conducted on the switch control plane.

Next, we present a set of micro-benchmarks which allow
us to assess the benefits of our flow marker generation scheme.
We will see that flow marker size (hence memory efficiency)
tends to be more sensitive than classification accuracy to small
variations in the quantization. The trend is the inverse for
truncation, where accuracy is more sensitive to small variations
than flow marker size. Our optimizer helps to find sweet-spot
setups on the Pareto curve (as explained in Section VII-H).

D. Effects of Quantization

To study the effects of FlowLens’s compression schemes,
we first focus on the generation of flow markers for packet
length distributions and start by analyzing the trade-offs of
quantization. We present our main findings:

1. Multimedia covert channels can be detected with up to
92% accuracy using 188-byte flow markers. We leverage
XGBoost to classify covert channels [7]. Figure 6 shows how
the absolute values obtained for the accuracy, FPR, and FNR
of the classifier vary when identifying Facet and DeltaShaper
covert channels for different quantization levels (QL). For
instance, for quantization level QL=4 FlowLens can correctly
identify Facet and DeltaShaper flows with less than 5% and
1% decrease in accuracy, respectively. Table III shows that, for
QL=4, a flow marker can be represented in 94 bins instead
of a full distribution composed of 1500 bins, amounting to
an order of magnitude memory savings. While a single flow
marker is then represented using 188B instead of 3000B,
DeltaShaper classification scores are maintained with respect
to those obtained when using full information (see Figure 6).

2. Accuracy of website fingerprinting is maintained when
compressing flow markers by two orders of magnitude. For
assessing the quality of FlowLens on website fingerprinting, we
use the Multinomial Naı̈ve-Bayes classifier [29]. We reproduced
the multiclass closed-world website fingerprinting task for

0 2 3 4 5 6 7 8
Quantization Level (QL)

0.0
0.2
0.4
0.6
0.8

1
0.97 0.97 0.97 0.96 0.95 0.91

0.76

0.46

Figure 7. Accuracy results for website fingerprinting when using quantized
packet length distributions.

10 20 30 40 50

0.2
0.4
0.6
0.8

1

Fa
ce

t

0.93 0.93 0.92 0.92 0.93

0.07 0.07 0.07 0.07 0.070.07 0.08 0.09 0.08 0.08

Acc
FPR
FNR

10 20 30 40 50
Number of selected features

0.2
0.4
0.6
0.8

1

De
lta

Sh
ap

er

0.85 0.84 0.85 0.86 0.88

0.17 0.21 0.17 0.17 0.150.13 0.11 0.13 0.10 0.10

Acc
FPR
FNR

Figure 8. Accuracy, FPR, and FNR for covert channel detection with an
increasing number of features for quantization level QL=4.

different quantization levels. Figure 7 shows that FlowLens
is able to maintain the same classification accuracy up to a
quantization level QL=3. Providing that classification accuracy
can be relaxed in favor of memory savings, quantization can
be further increased to QL=6, while still achieving over 90%
accuracy and reducing a flow marker’s memory footprint by
two orders of magnitude.

3. Very coarse-grained flow markers are unsuitable for
performing traffic differentiation. Figure 7 shows that flow
markers can only be compressed to a given factor before causing
a steep decrease in the quality of the models’ predictions.
For instance, in Figure 6, it is possible to observe that for
QL=7 the accuracy of the classifier is already over 20% and
10% away from the result obtained with full information for
Facet and DeltaShaper, respectively. Thus, it is imperative
to find the correct balance between memory savings and
accuracy. FlowLens balances this trade-off, for different use
cases, through a parameterization during the profiling phase.

E. Effects of Truncation

The second mechanism to generate compact flow markers
is that of truncating the flow marker to a subset of bins which
make up for the most relevant features leveraged by the classifier.
This is illustrated next, as we highlight our main findings after
applying tailored truncation in different use cases.

1. Accurate detection of covert channels can be achieved
using a flow marker of just 20 bytes. We elaborated a
tailored truncation approach based on the importance of features
computed by XGBoost. Figure 8 depicts the results obtained
when performing quantization with QL=4 and truncating to the
top-N most important features. The accuracy, FPR, and FNR
rate of the classifier are practically identical when using the

10



0 2 3 4 5 6 7 80.0

0.0002

0.0004

0.0006

0.0008

0.001
FP

R

0 2 3 4 5 6 7 80.0

0.2

0.4

0.6

0.8

1

FN
R

0.0 0.2 0.4 0.6 0.8 1.0

Quantization Level (QL)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9. FPR and FNR for www.amazon.com at different quantization
levels (QL). FNR shows the probability of identifying www.amazon.com as
some other website. FPR shows the probability of some other website being
mistakenly classified as www.amazon.com. Truncation is applied at each QL.

Table IV. NUMBER OF BINS USED IN www.amazon.com TRUNCATION.

Bins and Memory Quantization Level (QL)
len(1 bin) = 2 Bytes 0 2 3 4 5 6 7 8

Total Number of Bins 1500 375 188 94 47 24 12 6
Bins After Truncation 159 159 156 87 46 23 12 6

top-10 and top-50 features to classify flows (e.g., a difference
of only 1% in FNR for Facet flows), and very similar to the
results obtained when using full information (refer to QL=4 in
Figure 6). Thus, truncation can not only maintain high accuracy,
but further reduce the flow marker footprint from 188B (QL=4)
to just 20B (QL=4, top-N=10).

2. 20-byte flow markers enable tracking 150× more flows.
Covert flow markers can be reduced to just 20B using truncation.
This corresponds to a 150× space-saving when representing a
flow (from 3000B to 20B). The space freed by compressing a
single flow represents an increase in FlowLens’s measurement
capacity by two orders of magnitude.

3. Fingerprinting accesses to a website yields good results
even when feature ranking is unavailable. The truncation
method employed for covert channel detection is only applicable
when considering classifiers able to output feature importance.
To overcome the fact that Herrmann et al.’s [29] classifier is
unable to output a rank of feature importance, we perform
manual bin selection aimed at identifying a single website,
e.g., www.amazon.com. Essentially, we first take a collection of
access traces performed over a period of time to that particular
website. Then, we simply discard the bins that correspond to
packet lengths which have had zero counts of the sampled flows.
Based on this selection, we then train our classifier accordingly.
We can see in Figure 9 that the results obtained using this
approach remain competitive. For instance, with quantization
level QL=4, flows can be correctly identified with a 0.016%
FPR and 9.333% FNR. As shown in Table IV, this flow marker
footprint is not as small as with covert channel detection. Yet, it
is practical to fingerprint website accesses with QL=4, yielding
flow markers with a compression ratio of 1500:87, i.e., 17.2×.

F. Measuring Inter-Packet Timing

In this section, we concentrate on the ability of FlowLens
to perform tasks that require both the inspection of packets’
inter-arrival (IPT) and length (PL) distributions. To this end, we
evaluate FlowLens in detecting P2P botnet chatter. Since the
network traffic produced by bots tends to be stealthy and spread

0 2 3 4 5 6 7 8
QLPL

0.0

0.2

0.4

0.6

0.8

1

Pr
ec

isi
on

0 2 3 4 5 6 7 8
QLPL

0.0

0.2

0.4

0.6

0.8

1

Re
ca

ll

0 2 3 4 5 6 7 8
QLPL

0.0

0.2

0.4

0.6

0.8

1

FP
R

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

QLIPT=0 QLIPT=2 QLIPT=4 QLIPT=6 QLIPT=8 QLIPT=10

Figure 10. Precision, recall, and FPR for malicious P2P traffic.

across time, packets sent in bot conversations are expected to
have a higher IPT than those of legitimate P2P conversations.
A conversation consists of the set of flows between any two
hosts within a given time window, called flowgap. We resort to
the Random Forest classifier originally employed by Narang et
al. in PeerShark [53], and follow their recommendation to set
flowgap to 3600s. Since the largest flowgap is set to 3600s, we
vary the quantization of inter-arrival time down to a minimum
of 4 bins (QLIPT = 10).

Figure 10 depicts the precision, recall, and FPR obtained
by the classifier when identifying botnet chatter for different
QL applied to both PL and IPT distributions. While QLPL ≤ 4
slightly degrades precision and recall, we observe a sharp
drop in both metrics when QLPL > 4. The FPR, however,
is not significantly affected by increasing quantization levels.
Our experiments also reveal that precision and recall in the
identification of legitimate P2P traffic are largely unaffected by
the effect of quantization, whereas FPR takes a sharp increase
for QLPL ≥ 6 (20% at QLPL = 6 up to 50% at QLPL = 8).

This figure also shows that it is possible to accurately
identify botnet traffic with compact flow markers. For instance,
〈QLPL = 4, QLIPT = 6〉 achieves a recall of 0.96, only 3%
worse when compared to the result obtained when using full
information (0.99). This accounts for a memory saving of 16×
when storing a flow’s packet length distribution, as well as
occupying just 57 buckets×2B = 114B to keep an inter-packet
timing distribution. These results suggest that FlowLens can
offer different space-saving/accuracy trade-offs.

G. Performance of Automatic Profiling

To evaluate FlowLens’s automatic profiling mechanism, we
explore the parameter search space for each use case. For Facet
and DeltaShaper, the search space includes the quantization
and truncation parameters studied above (48 configurations).
For website fingerprinting, the search space corresponds to 8
quantization configurations. For botnet detection, we consider
40 possible configurations based on packet length and IPT
quantization, as we refrain from considering those whose
QLIPT = 0. We configure the optimizer to explore i=10
configurations for covert channel and botnet detection, and
i=4 for website fingerprinting. For simplicity, we use no initial
sampling for bootstrapping the optimizer, but techniques like
Latin Hypercube sampling [75] may be also plugged in.

Fully automatic mode: Table V depicts the results obtained
by our automatic profiler to choose an FMA configuration. In
all cases, the profiler chooses a configuration that, albeit not
the best accuracy wise, still provides a competitive accuracy

11



Table V. RESULTS OF THE PROFILING PROCEDURE, INCLUDING THE CONFIGURATION OUTPUT BY THE OPTIMIZER AND THE TOP-3 EXPLORED
CONFIGURATIONS (LISTED BY DECREASING ACCURACY, EXCEPT FOR THE CASE OF BOTNETS WHICH CORRESPONDS TO MALICIOUS TRAFFIC RECALL).

Config. Rank Facet (i=10) DeltaShaper (i=10) Website Fingerprinting (i=4) Botnets (i=10)

#1 〈QL=2, Top-N=all〉 = 0.960 〈QL=5, Top-N=all〉 = 0.880 〈QL=0〉 = 0.970 〈QLPL=2, QLIPT =2〉 = 0.970
#2 〈QL=3, Top-N=50〉 = 0.951 〈QL=0, Top-N=all〉 = 0.873 〈QL=4〉 = 0.965 〈QLPL=0, QLIPT =6〉 = 0.969
#3 〈QL=0, Top-N=30〉 = 0.947 〈QL=0, Top-N=20〉 = 0.870 〈QL=5〉 = 0.948 〈QLPL=4, QLIPT =6〉 = 0.960

Output 〈QL=3, Top-N=10〉 = 0.944 〈QL=5, Top-N=10〉 = 0.840 〈QL=4〉 = 0.965 〈QLPL=3, QLIPT =1024〉 = 0.953

while generating compact flow markers. For instance, for Facet,
the top-3 configurations exhibit a marker size of 375, 50, and
30 bins, respectively. Our profiler chooses a configuration that
provides a marker size of 10 bins while achieving an accuracy
only 1.6% worse than the configuration with the best-found
accuracy (and with a 37× smaller marker). Our reward policy
leads the optimizer to perform good decisions over the explored
configurations. In website fingerprinting, the profiler outputs the
top-2 configuration rather than top-1 since the latter’s marker
size is too big in comparison (1500 vs 94 bins). The profiler
also refrains from choosing top-3, a configuration whose marker
is 2× smaller but less accurate. This trend can be observed for
the remaining use cases.

Smaller marker for target accuracy: FlowLens can find a
configuration that exceeds a minimum accuracy threshold, and
that provides the smallest marker. For instance, we set a target
accuracy of 0.85 for a DeltaShaper configuration. Among the
10 experimented configurations, the optimizer has found 3
candidate configurations with an accuracy larger than the set
threshold. The system output 〈QL=4, Top-N=30〉 = 0.850, albeit
finding 〈QL=5, Top-N=40〉 = 0.876 or 〈QL=0, Top-N=40〉 =
0.880, two other configurations which produced larger accuracy
at the expense of a larger marker.

Best accuracy given a size constraint: The system is also
able to find configurations with a larger accuracy value, given
a maximum marker size. Additionally, and since the size
of a marker can be computed offline without first trying a
configuration, we achieve a reduction in the search space. In
the case of DeltaShaper, setting a maximum marker size equal
to 30 enables the reduction of the search space from 48 to
21 possible configurations. In this case, the optimizer outputs
〈QL=2, Top-N=30〉 = 0.890, albeit finding other smaller but
less accurate alternatives such as 〈QL=3, Top-N=20〉 = 0.850.

H. Comparison with Related Approaches

In this section, we compare FlowLens against two related
approaches: i) techniques which are able to produce compressed
representations of packet distributions, and ii) techniques for
collection of traffic features resorting to programmable switches.

Alternative feature compression approaches: Online Sketch-
ing (OSK) [22] and Compressive Traffic Analysis (CTA) [55]
generate compressed packet length/inter-packet timing distribu-
tions using linear transformations. However, both approaches
depend on matrix multiplications and/or floating-point oper-
ations unsupported by current switching hardware. Yet, we
compare the classification accuracy of FlowLens against the
accuracy obtained by OSK and CTA when using each technique
to compress flow representations.

For evaluating the quality of the solutions yielded by the
different compression techniques, we leverage the concept of

0 20 40 60 80 100
Marker Size (Bins)

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ce

t

FlowLens
OSK
CTA

0 20 40 60 80 100
Marker Size (Bins)

0.0

0.2

0.4

0.6

0.8

1.0

De
lta

Sh
ap

er

FlowLens
OSK
CTA

Figure 11. Pareto frontier for covert channel detection when using FlowLens,
OSK, and CTA. Dots show individual configurations.

Pareto optimality [57] which allows us to compare possible
solutions to multi-criteria optimization problems (flow marker
size vs. accuracy, in our case). A solution is said to be Pareto
optimal if it cannot be improved in one of the objectives without
adversely affecting the other. By generating the set of all of the
potentially optimal solutions (Pareto frontier) for each approach,
we can observe which approach delivers the best trade-offs
between classification accuracy and marker size.

Figure 11 depicts the accuracy obtained in the classification
of covert channels when using flow markers (with size up
to 100 bins) generated by FlowLens, OSK, and CTA, while
using different compression ratios. FlowLens configurations are
achieved by combining the different quantization and truncation
parameters. Solid lines represent the Pareto frontiers [44] that
capture the best configurations for the three approaches. Overall,
FlowLens produces flow markers that exhibit a better accura-
cy/memory trade-off and obtain the most accurate compressed
representations of flows. For instance, in DeltaShaper, most
FlowLens configurations achieve over 0.80 accuracy (and a
maximum of 0.89 using a flow marker with a size of only 10
bins). In comparison, the most accurate OSK marker takes 16
bins and achieves an accuracy of only 0.76. A similar trend
occurs in the case of Facet detection.

Alternative feature collection approaches: Systems such as
*Flow [74] are able to collect fine-grained packet features at
line rate from the switch and offload them to dedicated servers,
where the packet distributions can be computed and analyzed
by other dedicated systems for specific applications. FlowLens
provides a complementary decentralized design where both the
collection of packet distribution features and the application-
specific analysis (i.e., flow classification) take place on the
switches, thus achieving considerable savings in communication,
compute, and storage hardware resources.

To estimate the potential gains of our design, we analyze the
communication costs of both *Flow and FlowLens. Assuming
the existence of 250k concurrent flows where each flow sends
15k packets during a collection window of 30 seconds, *Flow
offloads data structures named grouped packet vectors (GPVs),
each containing a flow key and a list of packet lengths, from a
sequence of packets in a flow, on an average of 640ms [74]

12



which totals 47 evictions. Since each GPV has a fixed header
of 24 bytes, assuming 2 bytes to encode a packet length,
*Flow must transfer (24B×47 + 2B×15k)×250k = 7.78GB per
collection window. This data would then need to be processed
on a dedicated server. In contrast, FlowLens only transfers the
classification score of each flow at the end of the collection
window which involves sending a fixed-size header per flow
(13B for flow ID plus a 4B score value) times 250k flows, i.e.,
≈4.25MB. Thus, FlowLens exhibits a communication footprint
three orders of magnitude smaller than *Flow.

VIII. SECURITY ANALYSIS

We now analyze the security properties of FlowLens when
functioning under an adversarial model. The overarching
goal of the adversary is to be able to generate flows of a
target application class without being detected by FlowLens.
We consider three categories of increasingly sophisticated
adversaries considering their knowledge about FlowLens and
the models employed in ML-based security applications.

1. No knowledge about FlowLens nor the ML model: In
the weakest threat model, the attacker knows nothing about
the presence of FlowLens in the network infrastructure, nor
the details of the models being used by the ML-based security
applications leveraging the capabilities of our system. In such
a case, as shown in the sections above, ML-based security
applications making use of the vanilla FlowLens setup can
identify different target classes of traffic with high accuracy.

2. FlowLens-aware adversary: In the second case, we con-
sider an adversary that is aware of the deployment of FlowLens
in the network infrastructure, but who is unaware of the
particular machine learning models being used to filter the
network for particular classes of traffic. In this case, the
adversary may attempt to launch two particular types of attacks:

Flow aggregation attacks: An adversary may attempt to
evade FlowLens’s classifier by misusing the truncation and
quantization steps to make the aggregation of flows of a given
class of traffic indistinguishable from another class. In this
sense, this type of attack is similar to our covert channel
scenario (Section VII-D) where the adversary’s goal is to
mimic the distribution of legitimate traffic and evade a classifier.
Figure 6 and Figure 8 show that a finer-grained aggregation of
packet distributions does make it harder to evade the classifier.
This suggests that increasing flow marker granularity makes
FlowLens more robust against flow aggregation attacks.

Evading collection windows: When analyzing long-lived net-
work flows, FlowLens collects flow markers during a maximum
pre-defined collection window. Once this window elapses, the
FMA located on a given switch stops monitoring flows while
the flow markers are read and FMA data structures are reset. An
adversary may attempt to exploit this window of opportunity
to transmit a class of traffic targeted by FlowLens during this
period. However, as mentioned in Section IV-D, FlowLens can
tolerate such attacks provided that multiple switches are used
in an interleaved fashion to ensure that at least one switch can
collect traffic pertaining to flows traversing the network.

DoS attacks: A FlowLens-aware adversary may also attempt
to compromise the availability of our system. For instance, it
may try to mount a DoS attack based on the transmission of

0.0 0.1 0.2 0.3 0.4 0.5
Feature Importance

11
8

59
10
12

9
54
7
6

13Fa
ce

t -
 X

GB
oo

st

Acc = 0.92
0.0 0.1 0.2 0.3 0.4 0.5
Feature Importance

12
11

8
13
61
7

41
9

14
15

Fa
ce

t -
 R

an
do

m
 F

or
es

t

Acc = 0.92
0.0 0.1 0.2 0.3 0.4 0.5
Feature Importance

12
11
41

8
7

13
4

68
38
51Fa

ce
t -

 D
ec

isi
on

 T
re

e

Acc = 0.87

Figure 12. Features (PL bins) collected by the FMA for the 〈QL=4, top-N=10〉
configuration, when considering different classifiers to identify Facet covert
channels. Features in bold are shared among at least two classifiers.

packets with random IP addresses, forcing FlowLens to keep
track of multiple dummy flows and waste the switch memory.
To mitigate such a threat, FlowLens can temporarily prevent
the installation of new rules in the FMA flow table when it
detects unusual bursts of traffic, or reconfigure FMA parameters
on-the-fly to store smaller (yet less accurate) flow signatures
so as to increase the number of measured flows.

3. FlowLens and ML model-aware adversary: The third
adversary we consider is cognizant of the operation of FlowLens
and knowledgeable about the ML model used by a given ML-
based application. Apart from an adversary’s attempts to evade
or compromise the availability of our system, such an adversary
aims to leverage adversarial ML techniques [3] to subvert the
correct behavior of the model. These attacks can be grouped
in two main categories [3]: i) training-time, where an attacker
aims at manipulating the training set used by the ML model
through the insertion of specific samples that alter the decision
boundaries of the classifier; ii) test-time, where an attacker
aims to evade classifiers by crafting traffic samples in such a
way that these fool the classifier during its operational phase.

In general, providing defenses to such attacks is orthogonal
to FlowLens’s ability to collect flow markers and it concerns
the particular models used by the different ML-based security
applications. Nevertheless, FlowLens is compatible with various
techniques aimed at increasing the robustness of the models
used for traffic analysis. For mitigating training-time attacks,
FlowLens’s profiling phase can incorporate mechanisms aimed
at filtering out contaminated instances upon training [45,
83, 25, 67]. Alternatively, FlowLens operators can leverage
recent models whose training is explicitly hardened against
the introduction of adversarial samples [16, 15, 78, 34]. For
tackling execution-time attacks, FlowLens is compatible with
the use of several techniques that increase the difficulty of an
adversary to successfully evade network traffic classifiers. For
instance, FlowLens can leverage classifier ensembles [1, 11, 42]
or randomize the classifiers deployed at test-time [50].

Hardening FlowLens against adversarial ML attacks: We
performed a simple experiment to understand whether FlowLens
can leverage the above techniques to improve its robustness
to adversarial attacks, while still collecting flow markers of
small size. To this end, we profiled three different classifiers –
XGBoost, Random Forest, and Decision Tree [7] – to identify
Facet traffic in a 〈QL=4, top-N=10〉 FMA configuration.

Figure 12 depicts the importance of the top 10 features
selected by the different classifiers after FlowLens’s profiling
step. Recall that, for a QL=4, there is a total of 94 features
(bins), from which only the top-10 is considered. We draw
two main observations from this figure. First, since all three
classifiers share several features (marked in bold), crafting the

13



traffic to subvert a given feature (e.g., feature 12), requires
extra effort to collectively assess how it affects the classification
accuracy not just of a single, but of all three classifiers. Second,
each classifier selects a subset of features that are exclusive to
it. Thus, while an adversary may shape a given flow to respect
the features analyzed by a particular classifier, there may be
another classifier that considers a different set of features. For
instance, XGBoost leverages bins 59, 10, 54, and 6 to better
inform a prediction, while the Random Forest classifier ignores
these features and includes 61, 14, 15 in its top-10 instead.

To run multiple classifiers in execution-time, FlowLens
must collect a superset of all meaningful features required
by each model. Thus, it is expected that flow markers will
increase their size. Figure 12 suggests that randomization, i.e.,
the random selection of one possible classifier, can provide a
good compromise between robustness to adversarial ML and
flow marker size. While a flow marker consists of 10 features
for a given classifier (amounting to 20B), a flow marker that
enables FlowLens to choose from three different models to
classify flows uses a total of 18 distinct features, producing
a flow marker amounting to just 36B. In a similar fashion,
FlowLens could use all three classifiers to produce an ensemble
which will ultimately classify a flow by majority voting [11].

Performance impact of the defense mechanisms: Although
we have not empirically assessed the performance overheads
caused by the proposed defense mechanisms, we argue that
these mechanisms should not significantly impair the perfor-
mance of FlowLens. Nevertheless, we reckon that they may
require additional resources. The impact on resource allocation
could be estimated, e.g., by measuring the memory consumed
using ensembles, or by studying how many switches would
suffice to plummet the risks of window evasion attacks.

IX. RELATED WORK

There is a considerable body of work proposing approaches
for building efficient network telemetry systems for large scale
networks [87]. Programmable switches can leverage TCAM-
based flow tables for keeping flow data [80, 76, 52] and wildcard
rules [13] to record a few statistics about a given flow [46]. The
major drawback of this technique is tied to the limited size of
TCAM which prevents the bookkeeping of more than a few
thousand flows [88]. While multiple flows can be combined in
the same table entry [91, 52], this aggregation jeopardizes the
accurate representation of a large number of flows [88].

Traffic sampling techniques enable the collection of statis-
tics for a large set of flows by recording a small number
of packets of each flow [17, 56, 23]. Examples of general
monitoring systems implementing sampling are OpenSam-
ple [77] or Planck [65]. Canini et al. [17] introduced a per-flow
measurement technique that holds on the partial sampling of
flows. However, the accuracy of sampling techniques is usually
reduced when one aims at obtaining a faithful representation of
a flow’s distribution [39]. Moreover, increasing the sample rate
is at odds with a larger memory footprint which can impact
the overall performance of the network [30].

Probabilistic data structures known as sketches enable
the error-bounded representation of flows’ statistics within
restrictive memory limits [88]. While multiple sketches allow
for the extraction of flow’s coarse-grained features [21, 86, 39,

43, 31, 85, 32], their strive for generality prevents recording
fine-grained information such as approximations of flows’
packet lengths and timing distributions. NetWarden [82] uses
sketches to record approximate distributions of inter-packet
timing distributions for a specific security task. In contrast,
FlowLens can be broadly applicable to a range of ML-based
applications. Coskun et al. [22] and Nasr et al. [55] explore
additional ways to compress packet distributions based on the
use of linear projections. Unfortunately, such techniques cannot
be implemented efficiently in current switching hardware.

Recent systems relying on network query refinement [54],
such as Turboflow [73] and *Flow [74], allow the data plane
to offload simple packet features to servers for aggregation
and processing. However, differently from FlowLens, such a
strategy may increase the risks of network congestion and
introduce scalability bottlenecks in large networks [41, 87].

X. CONCLUSIONS

This work proposed FlowLens, the first traffic analysis
system for ML-based security applications that collects and
analyses compact representations of flows’ packet distributions
– flow markers – within programmable switches. We evaluated
our system for three use cases comprising the detection of
network covert channels, website fingerprinting, and botnet
chatter detection. FlowLens can accurately predict these classes
of traffic flows with the help of compact flow markers, allowing
for a reduction between one to two orders of magnitude of the
memory footprint to represent packet distributions.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insight-
ful comments. This work was partially supported by na-
tional funds through Fundação para a Ciência e a Tec-
nologia (FCT) via the SFRH/BD/136967/2018 grant, and
the PTDC/EEI-COM/29271/2017, UIDB/50021/2020, and
PTDC/CCI-INF/30340/2017 (uPVN) projects.

REFERENCES

[1] J. Aiken and S. Scott-Hayward, “Investigating adversarial
attacks against network intrusion detection systems in
sdns,” in Proceedings of the Conference on Network
Function Virtualization and Software Defined Networks
(NFV-SDN), Dallas, TX, USA, November 2019, pp. 1–7.

[2] B. Anderson and D. McGrew, “Identifying encrypted
malware traffic with contextual flow data,” in Proceedings
of the 2016 ACM workshop on artificial intelligence and
security, Vienna, Austria, October 2016, pp. 35–46.

[3] G. Apruzzese, M. Colajanni, L. Ferretti, and M. Marchetti,
“Addressing adversarial attacks against security systems
based on machine learning,” in 2019 11th International
Conference on Cyber Conflict, vol. 900, Tallinn, Estonia,
May 2019, pp. 1–18.

[4] Barefoot Networks, Tofino Switch
https://www.barefootnetworks.com/products/brief-tofino/,
accessed: 2021-01-05.

[5] ——, P4 Studio,
https://www.barefootnetworks.com/products/brief-p4-
studio/, accessed:
2021-01-05.

14



[6] D. Barradas, N. Santos, and L. Rodrigues, “Deltashaper:
Enabling unobservable censorship-resistant TCP
tunneling over videoconferencing streams,” in
Proceedings on Privacy Enhancing Technologies,
Minneapolis, MN, USA, July 2017, pp. 5–22.

[7] ——, “Effective detection of multimedia protocol
tunneling using machine learning,” in Proceedings of the
27th USENIX Security Symposium, Baltimore, MD, USA,
August 2018, pp. 169–185.

[8] D. Barradas and S. Signorello, “FlowLens code
repository,” https://github.com/dmbb/FlowLens, 2020,
accessed: 2021-01-05.

[9] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl,
“Algorithms for hyper-parameter optimization,” Advances
in Neural Information Processing Systems, pp.
2546–2554, 2011.

[10] J. Bergstra, D. Yamins, and D. Cox, “Making a science
of model search: Hyperparameter optimization in
hundreds of dimensions for vision architectures,” in
Proceedings of the 30th International Conference on
Machine Learning, Atlanta, GA, USA, June 2013, pp.
115–123.

[11] B. Biggio, G. Fumera, and F. Roli, “Multiple classifier
systems for robust classifier design in adversarial
environments,” International Journal of Machine
Learning and Cybernetics, vol. 1, no. 1-4, pp. 27–41,
2010.

[12] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker, “P4: Programming
protocol-independent packet processors,” ACM
SIGCOMM Computer Communication Review, vol. 44,
no. 3, pp. 87–95, July 2014.

[13] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,
N. McKeown, M. Izzard, F. Mujica, and M. Horowitz,
“Forwarding metamorphosis: Fast programmable
match-action processing in hardware for sdn,” ACM
SIGCOMM Computer Communication Review, vol. 43,
no. 4, pp. 99–110, 2013.

[14] Broadcom, Tomahawk II 6.4Tbps Ethernet Switch,
https://www.broadcom.com/news/product-
releases/broadcom-first-to-deliver-64-ports-of-100ge-
with-tomahawk-ii-ethernet-switch, accessed:
2021-01-05.

[15] S. Calzavara, C. Lucchese, and G. Tolomei, “Adversarial
training of gradient-boosted decision trees,” in
Proceedings of the 28th ACM International Conference
on Information and Knowledge Management, Beijing,
China, November 2019, pp. 2429–2432.

[16] S. Calzavara, C. Lucchese, G. Tolomei, S. Abebe, and
S. Orlando, “Treant: training evasion-aware decision
trees,” Data Mining and Knowledge Discovery, pp. 1–31,
2020.

[17] M. Canini, D. Fay, D. Miller, A. Moore, and R. Bolla,
“Per flow packet sampling for high-speed network
monitoring,” in Proceedings of the First IEEE
International Communication Systems and Networks and
Workshops, Chennai, India, December 2009, pp. 1–10.

[18] C. Cascaval and D. Daly, P4 Architectures,
https://p4.org/assets/p4-ws-2017-p4-architectures.pdf,
accessed: 2021-01-05.

[19] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman,

S. Vargaftik, A. Berger, G. Mendelson, M. Alizadeh,
S.-T. Chuang, I. Keslassy, A. Orda, and T. Edsall, “drmt:
Disaggregated programmable switching,” in Proceedings
of the Conference of the ACM Special Interest Group on
Data Communication, Los Angeles, CA, USA, August
2017, pp. 1–14.

[20] Cisco, Cisco Encrypted Traffic Analytics Whitepaper,
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-
networks/enterprise-network-security/nb-09-encrytd-traf-
anlytcs-wp-cte-en.pdf, accessed:
2021-01-05.

[21] G. Cormode and S. Muthukrishnan, “What’s new:
Finding significant differences in network data streams,”
IEEE/ACM Transactions on Networking, vol. 13, no. 6,
pp. 1219–1232, 2005.

[22] B. Coskun and N. Memon, “Online sketching of network
flows for real-time stepping-stone detection,” in
Proceedings of the IEEE Annual Computer Security
Applications Conference, Honolulu, HI, USA, December
2009, pp. 473–483.

[23] N. Duffield, C. Lund, and M. Thorup, “Estimating flow
distributions from sampled flow statistics,” in
Proceedings of the SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols
for Computer Communications, 2003, pp. 325–336.

[24] P. I. Frazier, “A tutorial on bayesian optimization,” arXiv
preprint arXiv:1807.02811, 2018.

[25] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and
P. McDaniel, “On the (statistical) detection of adversarial
examples,” arXiv preprint arXiv:1702.06280, 2017.

[26] J. Gu, J. Wang, Z. Yu, and K. Shen, “Walls have ears:
Traffic-based side-channel attack in video streaming,” in
Proceedings of the IEEE Conference on Computer
Communications, Honolulu, HI, USA, April 2018, pp.
1538–1546.

[27] R. Habeeb, F. Nasaruddin, A. Gani, I. Hashem,
E. Ahmed, and M. Imran, “Real-time big data processing
for anomaly detection: A survey,” International Journal
of Information Management, vol. 45, pp. 289–307, 2019.

[28] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. Witten, “The weka data mining
software: an update,” ACM SIGKDD explorations
newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[29] D. Herrmann, R. Wendolsky, and H. Federrath, “Website
fingerprinting: Attacking popular privacy enhancing
technologies with the multinomial naı̈ve-bayes classifier,”
in Proceedings of the ACM Workshop on Cloud
Computing Security, Chicago, IL, USA, November 2009,
pp. 31–42.

[30] Q. Huang, X. Jin, P. Lee, R. Li, L. Tang, Y.-C. Chen, and
G. Zhang, “Sketchvisor: Robust network measurement
for software packet processing,” in Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication, August 2017, pp. 113–126.

[31] Q. Huang, P. Lee, and Y. Bao, “Sketchlearn: relieving
user burdens in approximate measurement with
automated statistical inference,” in Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication, Budapest, Hungary, August 2018, pp.
576–590.

[32] N. Ivkin, Z. Yu, V. Braverman, and X. Jin, “Qpipe:
Quantiles sketch fully in the data plane,” in Proceedings

15



of the 15th International Conference on Emerging
Networking Experiments And Technologies, Orlando, FL,
USA, December 2019, pp. 285–291.

[33] Q. Kang, L. Xue, A. Morrison, Y. Tang, A. Chen, and
X. Luo, “Programmable in-network security for
context-aware BYOD policies,” in Proceedings of the
29th USENIX Security Symposium, Virtual Event, USA,
August 2020, pp. 595–612.

[34] A. Kantchelian, J. Tygar, and A. Joseph, “Evasion and
hardening of tree ensemble classifiers,” in Proceedings of
the 33rd International Conference on Machine Learning,,
vol. 48, New York, NY, USA, June 2016, pp. 2387–2396.

[35] S. Khattak, N. Ramay, K. Khan, A. Syed, and
S. Khayam, “A taxonomy of botnet behavior, detection,
and defense,” IEEE communications surveys & tutorials,
vol. 16, no. 2, pp. 898–924, 2013.

[36] J. Kučera, D. A. Popescu, H. Wang, A. Moore,
J. Kořenek, and G. Antichi, “Enabling event-triggered
data plane monitoring,” in Proceedings of the Symposium
on SDN Research, San Jose, CA, USA, March 2020, pp.
14––26.

[37] G. Li, M. Zhang, C. Liu, X. Kong, A. Chen, G. Gu, and
H. Duan, “Nethcf: Enabling line-rate and adaptive
spoofed ip traffic filtering,” in Proceedings of the 27th
IEEE international conference on network protocols,
Chicago, IL, USA, October 2019, pp. 1–12.

[38] S. Li, M. Schliep, and N. Hopper, “Facet: Streaming
over videoconferencing for censorship circumvention,” in
Proceedings of the 13th Workshop on Privacy in the
Electronic Society, Scottsdale, AZ, USA, November
2014, pp. 163–172.

[39] Y. Li, R. Miao, C. Kim, and M. Yu, “Flowradar: A
better netflow for data centers,” in Proceedings of the
13th USENIX Conference on Networked Systems Design
and Implementation, Santa Clara, CA, USA, March
2016, pp. 311–324.

[40] M. Liberatore and B. N. Levine, “Inferring the source of
encrypted http connections,” in Proceedings of the 13th
ACM conference on Computer and Communications
Security, Alexandria, VA, USA, October 2006, pp.
255–263.

[41] Y. Lin, Y. Zhou, Z. Liu, K. Liu, Y. Wang, M. Xu, J. Bi,
Y. Liu, and J. Wu, “Netview: Towards on-demand
network-wide telemetry in the data center,” Computer
Networks, vol. 180, 2020.

[42] L. Liu, W. Wei, K.-H. Chow, M. Loper, E. Gursoy,
S. Truex, and Y. Wu, “Deep neural network ensembles
against deception: Ensemble diversity, accuracy and
robustness,” in Proceedings of the 16th IEEE
International Conference on Mobile Ad Hoc and Sensor
Systems, Monterey, CA, USA, November 2019, pp.
274–282.

[43] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and
V. Braverman, “One sketch to rule them all: Rethinking
network flow monitoring with univmon,” in Proceedings
of the Conference of the ACM Special Interest Group on
Data Communications Conference, Florianópolis, Brazil,
August 2016, pp. 101–114.

[44] D. Luc, Pareto Optimality. Springer New York, 2008,
pp. 481–515.

[45] S. Ma and Y. Liu, “Nic: Detecting adversarial samples
with neural network invariant checking,” in Proceedings

of the 26th Network and Distributed System Security
Symposium, San Diego, CA, USA, February 2019.

[46] M. Malboubi, L. Wang, C.-N. Chuah, and P. Sharma,
“Intelligent sdn based traffic (de) aggregation and
measurement paradigm (istamp),” in Proceedings of the
IEEE Conference on Computer Communications,
Toronto, Canada, April 2014, pp. 934–942.

[47] R. McPherson, A. Houmansadr, and V. Shmatikov,
“CovertCast: Using live streaming to evade internet
censorship,” Proceedings on Privacy Enhancing
Technologies, vol. 2016(3), pp. 212–225, 2016.

[48] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky,
A. Shabtai, D. Breitenbacher, and Y. Elovici,
“N-baiot—network-based detection of iot botnet attacks
using deep autoencoders,” IEEE Pervasive Computing,
vol. 17, no. 3, pp. 12–22, 2018.

[49] R. Meier, P. Tsankov, V. Lenders, L. Vanbever, and
M. Vechev, “Nethide: Secure and practical network
topology obfuscation,” in Proceedings of the 27th
USENIX Security Symposium, Baltimore, MD, USA,
August 2018, pp. 693–709.

[50] D. Meng and H. Chen, “Magnet: a two-pronged defense
against adversarial examples,” in Proceedings of the ACM
SIGSAC conference on computer and communications
security, Dallas, TX, USA, October 2017, pp. 135–147.

[51] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad:
Making stateful layer-4 load balancing fast and cheap
using switching asics,” in Proceedings of the Conference
of the ACM Special Interest Group on Data
Communication, Los Angeles, CA, USA, August 2017,
pp. 15–28.

[52] M. Moshref, M. Yu, R. Govindan, and A. Vahdat,
“Dream: dynamic resource allocation for software-defined
measurement,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 4, pp. 419–430,
2015.

[53] P. Narang, S. Ray, C. Hota, and V. Venkatakrishnan,
“Peershark: detecting peer-to-peer botnets by tracking
conversations,” in Proceedings of the IEEE Security and
Privacy Workshops, San Jose, CA, USA, May 2014, pp.
108–115.

[54] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal,
V. Arun, M. Alizadeh, V. Jeyakumar, and C. Kim,
“Language-directed hardware design for network
performance monitoring,” in Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication, Los Angeles, CA, USA, August 2017,
pp. 85–98.

[55] M. Nasr, A. Houmansadr, and A. Mazumdar,
“Compressive traffic analysis: A new paradigm for
scalable traffic analysis,” in Proceedings of the ACM
SIGSAC Conference on Computer and Communications
Security, Dallas, TX, USA, October 2017, pp.
2053–2069.

[56] Netflow, https://www.ietf.org/rfc/rfc3954.txt, accessed:
2021-01-05.

[57] P. Ngatchou, A. Zarei, and A. El-Sharkawi, “Pareto multi
objective optimization,” in Proceedings of the 13th
International Conference on, Intelligent Systems
Application to Power Systems, Arlington, VA, USA,
January 2005, pp. 84–91.

[58] T. Nguyen and G. Armitage, “A survey of techniques for

16



internet traffic classification using machine learning.”
IEEE Communications Surveys and Tutorials, vol. 10, no.
1-4, pp. 56–76, 2008.

[59] T. O’Connor, R. Mohamed, M. Miettinen, W. Enck,
B. Reaves, and A.-R. Sadeghi, “Homesnitch: Behavior
transparency and control for smart home iot devices,” in
Proceedings of the 12th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, Miami,
FL, USA, May 2019, pp. 128—-138.

[60] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel,
“Website fingerprinting in onion routing based
anonymization networks,” in Proceedings of the 10th
Annual ACM Workshop on Privacy in the Electronic
Society, Chicago, IL, USA, October 2011, pp. 103–114.

[61] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and
S. Shenker, “Netbricks: Taking the V out of {NFV},” in
Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation,
Savannah, GA, USA, November 2016, pp. 203–216.

[62] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine Learning in
Python ,” Journal of Machine Learning Research,
vol. 12, pp. 2825–2830, 2011.

[63] C. Putman, Abhishta, and L. Nieuwenhuis, “Business
model of a botnet,” in Proceedings of the 26th
Euromicro International Conference on Parallel,
Distributed and Network-based Processing, Cambridge,
UK, March 2018, pp. 441–445.

[64] B. Rahbarinia, R. Perdisci, A. Lanzi, and K. Li,
“Peerrush: Mining for unwanted p2p traffic,” Journal of
Information Security and Applications, vol. 19, no. 3, pp.
194–208, 2014.

[65] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter,
K. Agarwal, J. Carter, and R. Fonseca, “Planck:
Millisecond-scale monitoring and control for commodity
networks,” ACM SIGCOMM Computer Communication
Review, vol. 44, no. 4, pp. 407–418, 2014.

[66] A. Reed and M. Kranch, “Identifying https-protected
netflix videos in real-time,” in Proceedings of the
Seventh ACM on Conference on Data and Application
Security and Privacy, Scottsdale, AZ, USA, March 2017,
pp. 361–368.

[67] K. Roth, Y. Kilcher, and T. Hofmann, “The odds are odd:
A statistical test for detecting adversarial examples,” in
Proceedings of the 36th International Conference on
Machine Learning, vol. 97, Long Beach, CA, USA, June
2019.

[68] R. Schuster, V. Shmatikov, and E. Tromer, “Beauty and
the burst: Remote identification of encrypted video
streams,” in Proceedings of the 26th USENIX Security
Symposium, Vancouver, BC, Canada, August 2017, pp.
1357–1374.

[69] N. Sharma, A. Kaufmann, T. Anderson,
A. Krishnamurthy, J. Nelson, and S. Peter, “Evaluating
the power of flexible packet processing for network
resource allocation,” in Proceedings of the 14th USENIX
Symposium on Networked Systems Design and
Implementation, Boston, MA, USA, March 2017, pp.
67–82.

[70] A. Sivaraman, A. Cheung, M. Budiu, C. Kim,
M. Alizadeh, H. Balakrishnan, G. Varghese,
N. McKeown, and S. Licking, “Packet transactions:
High-level programming for line-rate switches,” in
Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, Florianópolis,
Brazil, August 2016, pp. 15–28.

[71] V. Sivaraman, S. Narayana, O. Rottenstreich,
S. Muthukrishnan, and J. Rexford, “Heavy-hitter
detection entirely in the data plane,” in Proceedings of
the ACM Symposium on SDN Research, Santa Clara, CA,
USA, April 2017, pp. 164–176.

[72] J. Snoek, H. Larochelle, and R. Adams, “Practical
bayesian optimization of machine learning algorithms,”
in Proceedings of the 25th International Conference on
Neural Information Processing Systems, vol. 2, Lake
Tahoe, NV, USA, December 2012, pp. 2951–2959.

[73] J. Sonchack, A. Aviv, E. Keller, and J. Smith,
“Turboflow: Information rich flow record generation on
commodity switches,” in Proceedings of the Thirteenth
EuroSys Conference, Porto, Portugal, April 2018, pp.
1–16.

[74] J. Sonchack, O. Michel, A. Aviv, E. Keller, and J. Smith,
“Scaling hardware accelerated network monitoring to
concurrent and dynamic queries with *flow,” in
Proceedings of the USENIX Annual Technical
Conference, Boston, MA, USA, July 2018, pp. 823–835.

[75] M. Stein, “Large sample properties of simulations using
latin hypercube sampling,” Technometrics, vol. 29, no. 2,
pp. 143–151, 1987.

[76] Z. Su, T. Wang, Y. Xia, and M. Hamdi, “Flowcover:
Low-cost flow monitoring scheme in software defined
networks,” in Proceedings of the IEEE Global
Communications Conference, Austin, TX, USA,
December 2014, pp. 1956–1961.

[77] J. Suh, T. Kwon, C. Dixon, W. Felter, and J. Carter,
“Opensample: A low-latency, sampling-based
measurement platform for commodity sdn,” in
Proceedings of the 34th IEEE International Conference
on Distributed Computing Systems, Madrid, Spain, June
2014.

[78] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow,
D. Boneh, and P. McDaniel, “Ensemble adversarial
training: Attacks and defenses,” in Proceedings of the
Sixth International Conference on Learning
Representations, Vancouver, Canada, April 2018.

[79] R. Trimananda, J. Varmarken, A. Markopoulou, and
B. Demsky, “Packet-level signatures for smart home
device events,” in Proceedings of the 27th Network and
Distributed Security Symposium, San Diego, CA, USA,
February 2020.

[80] N. van Adrichem, C. Doerr, and F. Kuipers,
“Opennetmon: Network monitoring in openflow
software-defined networks,” in Proceedings of the IEEE
Network Operations and Management Symposium,
Krakow, Poland, May 2014.

[81] C. Wright, S. Coull, and F. Monrose, “Traffic morphing:
An efficient defense against statistical traffic analysis,” in
Proceedings of the 16th Annual Network & Distributed
Security Symposium, San Diego, CA, USA, February
2009.

[82] J. Xing, Q. Kang, and A. Chen, “Netwarden: Mitigating

17



network covert channels while preserving performance,”
in Proceedings of the 29th USENIX Security Symposium,
Virtual Event, USA, August 2020, pp. 2039–2056.

[83] W. Xu, D. Evans, and Y. Qi, “Feature squeezing:
Detecting adversarial examples in deep neural networks,”
in Proceedings of the 25th Network and Distributed
System Security Symposium, San Diego, CA, USA,
February 2018.

[84] J. Yan and J. Kaur, “Feature selection for website
fingerprinting,” Proceedings on Privacy Enhancing
Technologies, vol. 2018, no. 4, pp. 200–219, 2018.

[85] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou,
R. Miao, X. Li, and S. Uhlig, “Elastic sketch: Adaptive
and fast network-wide measurements,” in Proceedings of
the Conference of the ACM Special Interest Group on
Data Communication, Budapest, Hungary, August 2018,
pp. 561–575.

[86] T. Yang, L. Wang, Y. Shen, M. Shahzad, Q. Huang,
X. Jiang, K. Tan, and X. Li, “Empowering sketches with
machine learning for network measurements,” in
Proceedings of the 2018 ACM SIGCOMM Workshop on
Network Meets AI & ML, Budapest, Hungary, August
2018, pp. 15–20.

[87] M. Yu, “Network telemetry: towards a top-down
approach,” ACM SIGCOMM Computer Communication
Review, vol. 49, no. 1, pp. 11–17, 2019.

[88] X. Yu, H. Xu, D. Yao, H. Wang, and L. Huang,
“Countmax: A lightweight and cooperative sketch
measurement for software-defined networks,” IEEE/ACM

Transactions on Networking, vol. 26, no. 6, pp.
2774–2786, December 2018.

[89] F. Zane, G. Narlikar, and A. Basu, “Coolcams:
Power-efficient tcams for forwarding engines,” in
Proceedings of the 22nd Annual Joint Conference of the
IEEE Computer and Communications Societies, vol. 1,
San Francisco, CA, USA, March 2003, pp. 42–52.

[90] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu,
G. Gu, Q. Li, M. Xu, and J. Wu, “Poseidon: Mitigating
volumetric ddos attacks with programmable switches,” in
Proceedings of the 27th Network and Distributed Security
Symposium, San Diego, CA, USA, February 2020.

[91] G. Zhao, H. Xu, S. Chen, L. Huang, and P. Wang,
“Deploying default paths by joint optimization of flow
table and group table in sdns,” in Proceedings of the 25th
IEEE International Conference on Network Protocols,
Toronto, ON, Canada, Ocotober 2017, pp. 1–10.

[92] S. Zhao, M. Chandrashekar, Y. Lee, and D. Medhi,
“Real-time network anomaly detection system using
machine learning,” in Proceedings of 11th International
Conference on the Design of Reliable Communication
Networks, Kansas City, MO, USA, March 2015, pp.
267–270.

[93] Z. Zhuo, Y. Zhang, Z.-l. Zhang, X. Zhang, and J. Zhang,
“Website fingerprinting attack on anonymity networks
based on profile hidden markov model,” IEEE
Transactions on Information Forensics and Security,
vol. 13, no. 5, pp. 1081–1095, 2017.

18


