
Extending C2 Traffic Detection Methodologies:
From TLS 1.2 to TLS 1.3-enabled Malware

Diogo Barradas
University of Waterloo

Carlos Novo
INESC TEC, HASLab & DCC FCUP

Bernardo Portela
INESC TEC, HASLab & DCC FCUP

Sofia Romeiro
INESC-ID / IST, Universidade de Lisboa

Nuno Santos
INESC-ID / IST, Universidade de Lisboa

ABSTRACT

As the Internet evolves from TLS 1.2 to TLS 1.3, it offers enhanced
security against network eavesdropping for online communications.
However, this advancement also enables malicious command and
control (C2) traffic to more effectively evade malware detectors
and intrusion detection systems. Among other capabilities, TLS 1.3
introduces encryption for most handshake messages and conceals
the actual TLS record content type, complicating the task for state-
of-the-art C2 traffic classifiers that were initially developed for TLS
1.2 traffic. Given the pressing need to accurately detect malicious
C2 communications, this paper examines to what extent existing
C2 classifiers for TLS 1.2 are less effective when applied to TLS 1.3
traffic, posing a central research question: is it possible to adapt TLS
1.2 detection methodologies for C2 traffic to work with TLS 1.3 flows?

We answer this question affirmatively by introducing new meth-
ods for inferring certificate size and filtering handshake/protocol-
related records in TLS 1.3 flows. These techniques enable the ex-
traction of key features for enhancing traffic detection and can be
utilized to pre-process data flows before applying C2 classifiers.
We demonstrate that this approach facilitates the use of existing
TLS 1.2 C2 classifiers with high efficacy, allowing for the passive
classification of encrypted network traffic. In our tests, we inferred
certificate sizes with an average error of 1.0%, and achieved detec-
tion rates of 100% when classifying traffic based on certificate size,
and over 93% when classifying TLS 1.3 traffic behavior after train-
ing solely on TLS 1.2 traffic. To our knowledge, these are the first
findings to showcase specialized TLS 1.3 C2 traffic classification.

CCS CONCEPTS

• Security and privacy→ Intrusion detection systems.

KEYWORDS

Malware traffic detection, command and control, encrypted traffic

ACM Reference Format:

Diogo Barradas, Carlos Novo, Bernardo Portela, Sofia Romeiro, and Nuno
Santos. 2024. Extending C2 Traffic Detection Methodologies: From TLS
1.2 to TLS 1.3-enabled Malware. In The 27th International Symposium on

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
RAID 2024, September 30-October 02, 2024, Padua, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0959-3/24/09
https://doi.org/10.1145/3678890.3678921

Research in Attacks, Intrusions and Defenses (RAID 2024), September 30-
October 02, 2024, Padua, Italy. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3678890.3678921

1 INTRODUCTION

Transport Layer Security (TLS) has been the most predominant
protocol for malware command and control (C2) communications
at least since 2021, with a report from Sophos News stating that
TLS was used in 45.7% of malware’s outbound communications [26].
According to WatchGuard, TLS was used by 55% of malware in the
fourth quarter of 2023 [36], and in the first quarter of 2023, this
number reached peaks of 96.4% [35]. Malware’s adoption of TLS
is linked to their operators’ attempts to conceal communications.
Since TLS encrypts communication payloads, it generally prevents
malware detection and Intrusion Detection Systems (IDS) from
conducting deep packet inspection to determine the traffic’s true
nature. Moreover, C2 traffic making use of TLS can nowmore easily
blend in with an overwhelming portion of legitimate Internet traffic.

Nevertheless, some detection methods still provide the ability to
detect C2 traffic within TLS connections. Some detection methods
resorted to simple rules based on plaintext information. Examples
include IP blocklisting, widely used for spam prevention [20] and
malware detection, but also certificate blocklisting [27], which took
advantage of server certificates being openly exchanged in TLS up
until version 1.2. Other methodologies propose traffic classifica-
tion based on metadata. One example is certificate analysis, e.g.,
checking if certificates are self-signed, their validity dates, or the
domain present in their Common Name [34]. A different example
includes machine-learning classifiers trained on multiple character-
istics of TLS connections, such as sequences of packet lengths [42]
and inter-arrival times, TLS extensions and parameters [45], con-
textual information [6], host behavior [25], or certificate and first
application data packet lengths [56].

However, the Internet has been moving to TLS 1.3, as well as
adopting Encrypted Client Hello (ECH), and DNS over TLS (DoT)
or HTTPS (DoH), which erode the effectiveness of existing detec-
tion techniques for TLS-encrypted C2 traffic. TLS 1.3 communica-
tions now use a revised handshake protocol and TLS record format,
changing the typical record sequence and hiding record types and
contents early on in the handshake process. Most of the handshake
is now encrypted, including server certificates, hindering common
C2 traffic detection methods. Nonetheless, despite the introduc-
tion of an encrypted handshake, TLS 1.3 metadata like TLS record
sizes and timings can still be analyzed. This raises the central re-
search question tackled by this paper: can TLS 1.2 C2 traffic detection
methodologies be adapted to TLS 1.3 flows?

https://doi.org/10.1145/3678890.3678921
https://doi.org/10.1145/3678890.3678921
https://doi.org/10.1145/3678890.3678921


RAID 2024, September 30-October 02, 2024, Padua, Italy Diogo Barradas, Carlos Novo, Bernardo Portela, Sofia Romeiro, and Nuno Santos

To account for the upcoming loss of information, modern IDS ap-
proaches have considered detection techniques that can potentially
be applied to both TLS versions. These rely only on a subset of fea-
tures (e.g., packet lengths) that will remain available in TLS 1.3 [25].
However, since certificate information, handshake and alert-related
messages, and general application behavior are all sent intertwined
in encrypted format, it is difficult to ensure that a traffic classifier
trained on TLS 1.2 traffic can be directly applicable to TLS 1.3 traffic.

This paper builds on the insight that certificate sizes and appli-
cation behavior patterns can be reasonably inferred. Indeed, even
if partly encrypted, the TLS handshake protocol follows a fixed
sequence of exchanged messages and a well-behaved structure. As
such, one should be able to infer certificate sizes from the observed
encrypted data records, and isolate application data record sizes
from other encrypted messages, both within low margins of error.

We present two novel, complementary techniques for inferring
information from TLS 1.3 flows, and two classifiers based on said
information: certificate size, and patterns in application behavior.

Certificate size classification relies on a common characteristic of
earlier C2 traffic transmitted via TLS 1.2, in which the connections
rely on short, self-signed certificates. This is a correlation that
can be expected to be directly transposed to TLS 1.3, as malware is
commonly used in an off-the-shelf manner by script kiddie attackers,
a prevalent and ever-increasing threat to modern systems [16]. We
propose a method to infer the size of the exchanged certificate
in TLS 1.3 connections, by analyzing the sizes of the first server-
to-client records in light of the TLS 1.3 Handshake protocol; and
C-Cert, a binary C2 traffic classifier based on this single feature.

Alternatively, we demonstrate that C2 traffic has a distinct ap-
plication behavior, with specific payload lengths in the initially
exchanged messages. This is a correlation that would persist even
if countermeasures to C-Cert were to be employed – e.g. artifi-
cially increasing certificate sizes. Avoiding it would require more
considerable technical expertise, as it would entail fundamentally
changing malware code to modify its communication patterns. We
propose a method to isolate application behavior in TLS 1.3 flows,
and C-Behav, a C2 classifier based on application data. Behavior
isolation is based on identifying and discarding presumable Hand-
shake and Alert messages from in-between TLS 1.3 application data.
The classifier, trained on application data extracted from TLS 1.2,
can then classify TLS 1.3 sequences using our extraction method.

We validate the effectiveness of our TLS 1.3 classifiers by devising
multiple experiments across different datasets we sourced both from
public repositories and from in-house traffic captures collected by
ourselves. In these experiments, we trained our classifiers resorting
to TLS 1.2 traffic only, and attempted to classify a set of samples
comprised of benign and malicious TLS 1.3 traffic. Since real-world
traffic is unbalanced towards benign traffic, we train our classifiers
under similar settings and highlight that a “good” classifier must
necessarily achieve a high true negative rate (TNR) to minimize
false alerts and become practical as part of an IDS.

Our results revealed that in two datasets of legitimate TLS 1.3
traffic – one public, one collected in-house – C-Cert was able to
achieve a true negative rate of 99.48% and 99.91%, respectively,
while achieving true positive rates (TPR) of 100% on our TLS 1.3 C2
traffic. Similarly, a validation of the C-Behav classifier resulted in
a TNR of 99.42% and 99.78% in the same datasets, while achieving

a TPR of 93.87%. We also evaluate both classifiers’ performance
when dealing with TLS 1.3 C2 traffic produced by malware that
artificially increases certificate sizes to avoid detection. Our results
show that while this practice severely impairs the predictions of
C-Cert, the predictions of C-Behav remain largely unaffected, still
achieving high TNR values (over 93%) on such traffic.

To further assess the feasibility of our classifiers, we extended
our evaluation through the analysis of a novel dataset comprising
TLS traffic collected within a real university campus network. This
dataset contains roughly 10 million unlabeled TLS flows, more
than half being TLS 1.3. In this dataset, C-Cert (resp. C-Behav)
identified 99.13% (resp. 96.35%) of all TLS 1.3 flows as benign. While
we cannot assess the actual TNR of the classifiers because we cannot
be sure of which TLS flows are indeed C2 or non-C2, our results
suggest that multiple flows predicted as C2 traffic do include several
suspicious domains. Interestingly, an IP address associated with C2
activity over TLS 1.3 (as predicted by our classifiers) was at first not
perceived as malicious upon lookup on VirusTotal [40], but after
a few days this same IP address was (and is currently) established
to be associated with malicious activity. This demonstrates the
capability of our approaches to identify C2 traffic in the wild.

To summarize, this paper features the following contributions:
• Two novel techniques for TLS 1.3 certificate size inference and
application behavior isolation, as well as two new TLS traffic
classifiers that use the features extracted by these techniques.

• Two “in-house” datasets of legitimate (>500K flows) and C2
traffic (>790K flows) using two TLS versions.

• A “real-world” unlabeled dataset of TLS 1.2 and TLS 1.3 traffic
(>10M flows) collected within a university network.

Our classifiers, datasets and experiments are open-source [47].

2 TECHNICAL OVERVIEW

In this section, we start by introducing TLS 1.3, showing how it
differs from previous versions and how these differences may hin-
der existing detection methods (§2.1). Afterwards, we describe the
challenges involved in classifying TLS 1.3 traffic by leveraging an
intentionally oversimplified dataset containing both TLS 1.2 and
TLS 1.3 traffic (§2.2). Finally, we summarize the benefits of our
server certificate and application behavior inference procedures
when detecting TLS 1.3 C2 traffic in our simplified dataset (§2.3).

2.1 Background on TLS 1.3

The latest version of the TLS protocol, TLS 1.3, is specified in RFC
8446 [53]. The RFC states some of the major differences between
TLS 1.2 and TLS 1.3, including: no support for legacy encryption
algorithms, encryption of all handshake messages after the Server
Hello, and restructured handshake state machine. TLS 1.3 saw an
unprecedentedly fast adoption due to market concentration – a
few large providers were responsible for pushing the new TLS
version into the market early on and sustaining its growth [32, 33].
Furthermore, a draft was submitted proposing Encrypted Server
Name Indication (ESNI) for TLS 1.3, which has the client sending the
Server Name Indication (SNI) extension that identifies the domain
name that the client is connecting to, encrypted with a server public
key obtained with a DNS query.



Extending C2 Traffic Detection Methodologies: From TLS 1.2 to TLS 1.3-enabled Malware RAID 2024, September 30-October 02, 2024, Padua, Italy

The aforementioned draft later evolved into ECH [54], in which
encryption is not only applied to the server domain but also to
other privacy-sensitive extensions and parameters in the Client
Hello, like the Application Layer Protocol Negotiation (ALPN) list,
preventing unintended information leaks. The server domain and
other TLS handshake features, such as the number of client exten-
sions or signature algorithms, have been used for malware traffic
detection [25] and may be obscured by ECH. For instance, when
ECH is used, TLS Handshakes between a client and servers behind
the same service provider should all look identical, thus hiding
which server is terminating the connection. The ECH standard is
still a work-in-progress [49], albeit with some adoption [59]. We
will assume its usage, which further hides information from traffic
classification services, to consider stronger adversaries and ECH’s
expected standardization and widespread adoption. With the same
reasoning, we also assume the usage of DNS encryption through
DoT or DoH, which also hides some helpful contextual information.

Prior to TLS 1.3, authentication certificates can be extracted by
searching for TLS records of type Handshake (type 22) and hand-
shake type Certificate (type 11). However, in TLS 1.3, an observer
can only infer certificate sizes from the size and nature of the TLS
records observed. Client and Server Hello messages have also be-
come significantly less informative with TLS 1.3, especially if using
ECH. While the Client Hello may preserve some information for
backwards-compatibility reasons (supported TLS versions, cipher
suites and extensions), once the server acknowledges the client’s
support for TLS 1.3, all sensitive or identifiable information should
be sent encrypted after the Server Hello. An observer of a Server
Hello record can extract the chosen cipher suite, but not much more,
which is insufficient for most C2 traffic detection methodologies.

2.2 Challenges in Classifying TLS 1.3

In contrast to C2 traffic exchanged over TLS 1.2, malicious traffic
exchanged over TLS 1.3 benefits from additional protections that
make it difficult for IDSs to accurately identify said traffic. The main
technical challenges tied to this difficulty entail:

• the refined Handshake protocol modifies the sequence of
records exchanged between clients and servers;

• no certificate information is available for classification;
• application behavior is no longer clearly isolated fromprotocol-
related messages for outside observers.

To showcase these challenges, we analyze a small illustrative ex-
ample that describes how the blind application of TLS 1.2 C2 traffic
classifiers fails when used in TLS 1.3. For succinctness, we abstract
away the details about the datasets and classifiers mentioned in this
example but will properly address them in the following sections.
The simplified dataset.We consider genuine TLS traffic captured
from websites featuring the Tranco [37] list and malicious TLS
traffic generated using Metasploit. Its composition is as follows:

(1) 10,000 genuine TLS 1.2 traffic flows;
(2) 10,000 genuine TLS 1.3 traffic flows;
(3) 75 malicious TLS 1.2 traffic flows;
(4) 75 malicious TLS 1.3 traffic flows;
(5) 50 malicious TLS 1.3 flows with increased certificate size.
The reasoning for (4) and (5) is that, while one expects the ma-

jority of C2 TLS 1.3 traffic to originate from off-the-shelf malware

(4), we explicitly consider a more challenging scenario where an
attacker manipulates server certificates to avoid detection (5).
Metrics of interest. Intrusion detection is a scenario where the
dataset is significantly unbalanced towards benign traffic, which
often leads to a base rate fallacy [10] in result analysis. As such,
we are interested in ensuring a high true negative rate, such that
classifiers are not prone to flood the IDS with false alerts. Thus, we
assess the quality of a classifier by measuring the TNR on benign
traffic – to check the rate of false classifications – and the true
positive rate on malicious traffic – to check the efficacy of the
classifier in actually identifying C2 flows.
A straw man C2 traffic classifier for TLS 1.3. Towards show-
casing the difficulties in transposing the detection capabilities of
TLS 1.2 traffic classifiers to TLS 1.3 traffic, we start by identifying
sets of features which are currently useful for detecting malicious
TLS 1.2 traffic but which could also potentially be applicable to TLS
1.3 traffic. Namely, we extract the sequence of TLS record sizes,
directions and content types of TLS 1.2 flows, as has been done
in prior work (more details on §3.2). Then, we train a classifier –
C-Basic – on these sequences (more details on §4.1).

As expected, C-Basic performs competently when applied to
the TLS 1.2 traffic comprising our example, achieving both a TPR
and TNR of 100.0%. Feature analysis reveals that predictions over
TLS 1.2 traffic are heavily influenced by the size of the TLS record
that carries the server certificate, suggesting that server certificate
sizes play a major role in C2 traffic detection. Additionally, we
observed distinct patterns in the sizes of application data records of
TLS 1.2 C2 traffic when compared to benign traffic, suggesting that
one might infer the type of traffic from the sizes of such records.

In turn, the application of C-Basic on TLS 1.3 traffic results in a
drastic drop of performance, effectively identifying all traffic as be-
nign. These results suggest that TLS 1.3’s obfuscation of certificate
sizes and of the relationship between handshake and application
data messages significantly thwarts the straightforward adaptation
of TLS 1.2 traffic classifiers to TLS 1.3 deployments, thus requiring
more advanced traffic analysis techniques.
Challenges out of scope. TLS record padding and Pre-Shared
Key (PSK) based authentication pose additional challenges in traffic
classification that are considered outside the scope of our work.

2.3 The Need for Inference on TLS 1.3

The results described in the previous section revealed that features
such as server certificate and application data record sizes are useful
for detecting C2 traffic over TLS 1.2. While we hypothesize these
features could also be useful for identifying TLS 1.3 C2 traffic, they
remain obscured through the inner workings of TLS 1.3.

Here, we briefly assess the performance of the two new classi-
fiers we propose when applied to our oversimplified dataset. Both
classifiers leverage features that are not directly accessible, but
which are instead inferred from TLS 1.3 traffic – recall that C-Cert
is based on the inferred server certificate size, and C-Behav is based
on the inferred sequence of application-data records. We relegate a
thorough explanation of the inner workings of these classifiers to
§4 and inference procedures to §5, and showcase how these allow
for the development of improved TLS 1.3 C2 traffic classifiers.



RAID 2024, September 30-October 02, 2024, Padua, Italy Diogo Barradas, Carlos Novo, Bernardo Portela, Sofia Romeiro, and Nuno Santos

More reliable C2 traffic classification for TLS 1.3. In the afore-
mentioned simplified dataset, C-Cert achieves a TPR of 75% on
malicious flows with and a TNR of 99.86% on all flows, revealing the
strong contribution of certificate sizes for distinguishing C2 traffic
from benign traffic. Indeed, when removing the 50 flows with artifi-
cially increased certificate size, we achieve a TPR of 100.0%, suggest-
ing that C-Cert can be avoided by artificially padding certificates
used in C2 communications. Alternatively, C-Behav achieves a TPR
of 93.5% and a TNR of 99.83%. It shows that one can also detect
C2 traffic from application behavior patterns, despite intentional
modifications to the sizes of C2 servers’ certificates.

In the following sections, we demonstrate the feasibility of our
approach in more refined and realistic scenarios. §3 describes our
methodology and datasets. §4 defines C-Cert and C-Behav, demon-
strating the patterns in which their classifications are based on. §5
describes the aforementioned adaptation to TLS 1.3 flows in further
detail, whereas §6 evaluates the efficacy of our classifiers.

3 METHODOLOGY AND DATASETS

We begin by introducing our assumptions and threat model, and by
establishing definitions on TLS flows and corresponding methods
pre-processing for feature extraction. Afterwards we provide an
in-depth description of the datasets used throughout the paper.

3.1 Assumptions and Threat Model

Wemake the following assumptions regarding the TLS connections
that we are processing and classifying.
TLS 1.3 with ECH.We assume a widespread adoption of TLS 1.3
with ECH. Server certificates, domain names and other potentially
sensitive fields are hidden. Plaintext TLS records are mostly un-
informative. Other records are encrypted and their content type
is hidden. Notice that in this scenario, flows can still be isolated;
passive observers performing TCP reassembly can see individual
TLS records and take note of their plaintext data, direction (client-
to-server, C2S, or server-to-client, S2C) and size. These records can
be split into two groups: a first set of S2C records, and the remain-
ing records. We perform server certificate size inference over the
record lengths of the first group, providing us with an additional
feature for traffic classification. The remaining records are filtered
to exclude handshake messages, isolating application behavior.
No deviation from TLS specification. We expect clients and
servers not to deviate from the standard TLS protocol specification.
No errors.We assume no protocol errors or failures. We discard
flows containing “Hello Retry Request” messages due to limitations
in our network capture processing software.
No lost packets. We assume that all flow packets are seen by our
capturing process, which is important for TCP reassembly.
No padding.We assume that clients and servers will not use record
padding. This is an option contemplated in TLS 1.3’s standard but
often met with reluctance, given its toll on bandwidth, possible
delays and the need for a deliberate adoption.
Server certificate-based authentication. We assume no PSK-
based authentication, nor clients certificate-based authentication.

§7.1 discusses the impact of not meeting these assumptions.

Threat model. Our threat model is that of a standard intrusion
detection scenario. A client machine is compromised with malware,
which will attempt to communicate with a C2 server located in
some external network using TLS 1.3. Our classifiers will play the
role of a firewall/IDS, retrieving and processing the messages ex-
changed in the network as a passive eavesdropper and then label
traffic as malicious/benign. We assume that our classifiers run in
a trusted environment, i.e., that the malware infecting the client
cannot prevent our classifiers from eavesdropping network packets.

3.2 TLS Flows and Feature Extraction

With the typical TLS-over-TCP traffic model, each TLS connec-
tion is layered over a TCP connection. Different applications can
then be layered on top of TLS: application data is broken into TLS
records which are then secured, broken into TCP segments, and
encapsulated into IP packets. TLS records may carry TLS messages
instead of application data, but information about content type is
hidden. For traffic analysis purposes, we group IP packets into flows
– sets of IP packets identified by a five-tuple of client and server
IP addresses, transport ports, and transport protocol [58]. We use
these flows as our classification object.

Throughout our experiments, we process “raw” network traffic
captures into tabular data by extracting certain metadata fields
from each TLS flow. We use Cisco’s Joy [17] for this, which can
follow TLS connections and extract flow metadata. Some of these
fields are extracted from Client Hello and Server Hello messages:
the TLS record versions, and the server_name, supported_versions,
session_ticket and pre_shared_key extension values. We extract the
HandshakeType of the first TLS record observed to filter out TLS con-
nections for which the Client Hello was not observed. We also check
if the server has sent a HelloRetryRequest, which makes the client
send a new Client Hello message. These extensions/parameters
are all externally observable. Combined, they account for 14 val-
ues/rows. These are not used for classification, but rather to identify
and filter out flows, to determine their negotiated TLS version, and
whether PSKs are being used for authentication (bypassing certifi-
cate exchange in the handshake process). For TLS 1.2 flows, we also
extract server certificate sizes, when observed.
Feature extraction. We also use Joy to extract features from each
flow, namely details on individual TLS records: their payload size
(in bytes), their direction (client-to-server, C2S, or server-to-client,
S2C), their record type, and their inter-record time (in milliseconds).
We do not use timing features since they are affected by the distance
between client and server, by network conditions, or by the client
machine resources.1 We extract the size, direction and type of each
flow’s first 20 TLS records, accounting for a total of 60 features
per flow – in every dataset we consider (see § 3), over 70% of the
included TLS flows do not reach the 20 records mark. Flows with
fewer than 20 records are padded. These features are either fed
directly to classifiers, or further processed (e.g., filtered by record
type), depending on the classifier and flow TLS version. Next, we
present further details on the TLS traffic datasets used in our work.

1As our traffic comes from multiple capture environments with different class dis-
tributions, timing information could introduce a significant bias to distinguish the
originating dataset (leakage), which would not capture a realistic application scenario.



Extending C2 Traffic Detection Methodologies: From TLS 1.2 to TLS 1.3-enabled Malware RAID 2024, September 30-October 02, 2024, Padua, Italy

Table 1: Dataset composition and classifiers overview ( →
dataset is used for training and testing; → testing only).

MTA Tranco MS DoHBrw UCNet

TLS ⩽ 1.2 ✓ ✓ ✓ ✓

TLS 1.3 ★ ✓ ✓ ✓ ✓

TLS⩽1.2 flows 36K 282K 396K 4,50M
TLS 1.3 flows 0.5K 224K 395K 247K 5,77M

C2 traffic ✓ ✓ ✝ ?

non-C2 traffic ✓ ✓ ✓ ✓

Public / In-House
/ Real-world

P IH IH P RW

C-Basic
C-Cert
C-Behav

★ – labeled with certificate fingerprinting: TLS 1.3 is unlabeled and thus not used.
✝ – malicious DoH usage, traffic tunneled through a legitimate DNS server (not used)
? – campus traffic is mostly benign, but might include some malware infections

3.3 Dataset Synopsis

At the time of writing, despite TLS being extensively used by mal-
ware, there is not a precompiled labeled dataset featuring malware
traffic over TLS. Some popular malware traffic datasets either: a)
feature unencrypted traffic, for which there are other efficient de-
tection methods; b) are outdated, and thus potentially no longer
accurately represent current threats; or c) contain only select fea-
tures, already extracted from pre-processed captures, preventing
others from applying general processing techniques over “raw”
traffic captures. To accurately represent our scenario, we gather
benign and C2 TLS traffic by combining multiple sources. Table 1
summarizes our datasets, the contained TLS versions, associated
labels, and the experiments used on. Succinctly, they are as follows.
• Malware Traffic Analysis (MTA) — traffic captures scraped from
a public website, filtered for TLS and labeled using certificate
fingerprinting (C2 and non-C2 traffic, TLS 1.2 only).

• Tranco — in-house captures of automated web browsing-related
network traffic (non-C2 traffic, both TLS versions).

• Metasploit (MS) — in-house captures of C2 traffic, generated
with a Metasploit Framework-based infrastructure (C2 traffic
only, both TLS versions).

• DoHBrw — benign TLS 1.3 traffic from the public CIRA-CIC-
DoHBrw-2020 dataset [46] (non-C2 traffic, TLS 1.3 only).

• UCNet — traffic captured on a university campus network (both
TLS versions).

The datasets produced by in-house captures are available in [47].
Classification setup. TLS 1.3 traffic is never used for training –
all TLS 1.3 traffic is placed into a ‘test’ set from the beginning, with
our premise being that a reliable groundtruth for TLS 1.3 traffic
and TLS 1.3 C2 datasets are (at the moment) still difficult to obtain.
The MTA and Tranco datasets were used for classifiers’ training
and validation: These datasets are split into training/validation and
test sets using stratified group k-fold [55] (SGKF) – maintaining the
percentage of samples for each class (C2 vs. non-C2) while making
sure that the same group (file from which the flow was obtained)
does not appear in both sets. The training/validation set was further
split using SGKF into 10 folds, onwhichwe perform cross-validation
(CV) for parameter tuning. After determining the best parameters,
classifiers are trained on the whole training/validation set, and
evaluated on the test set. These test metrics are the ones presented
throughout the paper. The test set is never used for training nor
parameter tuning, only for the final classifier evaluation.

The MS dataset is generally used for testing only, but also par-
tially for C-Basic and C-Behav’s training: 50% of the ‘MS TLS
1.2 short-certificate’ files are reserved for testing only. Out of the
remaining ‘TLS 1.2 short’ files, 90% of flows are also randomly re-
served for testing, leaving only 10% (of 50%) for training/validation.
This small percentage of flows roughly matches the numbers of
common malware families within the MTA set. These are combined
with the MTA and Tranco training/validation sets, with 10-fold
SGKF being used here too. The DoHBrw and UCNet datasets are
only ever used for testing. Our code is based on Python 3.10, and
uses Pandas (2.1.1), NumPy (1.26.1) and scikit-learn (1.3.2) modules.

3.4 Publicly-Available Datasets

Malware Traffic Analysis (MTA). This dataset was constructed
from traffic captures corresponding to malware infections, by scrap-
ing the MTA website [21]. This website contains multiple posts
with traffic captures, typically generated by running malware sam-
ples in a sandbox environment; these captures usually depict the
initial stages of a malware infection and its C2 communication,
often also including the download, C2 and actions of additional
“follow-up” malware downloaded by the first sample (e.g. spambot
activity, denial-of-service attacks, network discovery, etc.). MTA is a
frequently updated source of “raw” malware traffic captures, which
has been used by multiple recent works focused on malware traffic
detection [11, 30, 38, 39]. 2345 files we obtained via this extraction
process, dated from 2013 until late 2020.

To establish our groundtruth, we filter these captures by TLS
traffic, and identify C2 communication based on server certificates.
To match with C2 server certificates, we used the SSL Blacklist
project’s (SSLBL) [1] list of certificates that are known to be em-
ployed by botnet C2 servers. We have also identified additional C2
server certificates manually, by crossing information from the MTA
captures (such as IP addresses, certificate Common Names and Is-
suer Distinguished Names) with information from MTA itself and
from VirusTotal [40]. This resulted in 4795 certificates from SSLBL
corresponding to 11243 TLS flows, and 115 manually identified
certificates associated with 6910 TLS flows.2

Our preliminary analysis has shown that recent years have seen
a great increase in TLS traffic, but a small number of TLS flows
identified as C2 via SSLBL, suggesting a mismatch between MTA
and SSLBL. As such, our database does not include: a) recent MTA
captures (roughly from 2021 onward) which had a negative impact
on the classifiers’ learning, indicative of ground truth errors; and b)
TLS connections for which server certificates cannot be obtained,
because they are either running TLS 1.3 or performing PSK-based
authentication, a mechanism formerly known as session resumption.
These two sources of potential C2 TLS flows were excluded due to
their unreliable ground truth.
DoHBrw. For another source of TLS 1.3 benign traffic, we use the
CIRA-CIC-DoHBrw-2020 (DoHBrw) dataset [46], which was built
with the purpose of detecting and characterizing DoH traffic. This
dataset contains raw traffic captures of non-DoH and benign DoH
traffic, generated by visiting websites using HTTPS in browsers
appropriately configured. It also contains malicious DoH traffic
2Our manual labeling is not exhaustive. This is because we cannot confidently blocklist
certificates for which we have little associated traffic and no other information. Despite
being associated with a malware infection, not all MTA traffic is necessarily C2.



RAID 2024, September 30-October 02, 2024, Padua, Italy Diogo Barradas, Carlos Novo, Bernardo Portela, Sofia Romeiro, and Nuno Santos

generated with DNS tunneling tools. We don’t use the malicious
DoH traffic in our training as we’re not focused on detecting ma-
licious use of DoH: this type of traffic is a very specific context
of a legitimate service being abused for malicious communication.
Instead, we intend to make more generic C2 detectors. We use this
dataset as a source of benign TLS 1.3 traffic for testing purposes.

3.5 In-House Datasets

Tranco. To augment our TLS dataset, we use Browsertime [57],
a web browsing automation tool. We browse websites from the
Tranco list generated on 28 January 2024 to obtain benign (non-C2)
TLS traffic. Out of the 1 million domains included in the Tranco
list, all the first 10K were visited. Then, 1-out-of-10 were randomly
selected from the following 240K domains, 1-out-of-20 from the
next 250K, and 1-out-of-50 from the last 500K. This resulted in a
total of 56500 domains. Each website is visited twice: once using
TLS 1.2 and once using TLS 1.3, by changing the browser’s configu-
rations. We use Cloudflare’s “Malware and Adult Content Blocking”
DNS resolver [18] to avoid malware-related websites. This capture
resulted in 505938 TLS flows: 282227 TLS 1.2, and 223711 TLS 1.3.

We have also used curl [19] to capture web requests to the Alexa
Internet TOP 1000 websites, using both TLS 1.2 and TLS 1.3. We
saved the TLS pre-master secrets, allowing us to later decipher the
traffic and the TLS 1.3 handshakes in particular. This dataset was
not used to train or test classifiers directly, but rather to compare
both TLS versions and to better analyze TLS 1.3 traffic, contributing
to the Certificate Size Inference process and related statistics (§5.2).
Metasploit (MS). For malicious traffic, and given the lack of con-
firmed malicious TLS 1.3 C2 traffic on public datasets, we generate
traffic using Metasploit, and the Python version of Meterpreter [52],
with some adaptations to allow for TLS version specification and for
pre-master secret storage for later analysis. Meterpreter has been
associated with recent attacks [23], and Metasploit has been identi-
fied as the third most frequently seen malware family of 2021 and
2022 [43]. Unlike other more popular malware families, both MS
and Meterpreter are open-source, making them good resources for
generating traffic illustrative of C2 communication. The communi-
cation between the Meterpreter executable and the MS framework
acting as C2 server uses HTTP over TLS. The executable establishes
short-lived TLS connections to poll the C2 server for commands
and to send back responses. Despite the encryption provided by
TLS, the HTTP requests and responses are additionally encrypted.

By default, when listening for executables connecting over TLS,
the MS framework will generate a new server certificate each time
it is run. This certificate is self-signed, and filled with random infor-
mation for city, state, organization name, and organizational unit.
MS authors claim that such certificates are realistic-looking and
reduce the chance of signature-based detections by IDSs [51]. Being
self-signed, these certificates are not expected to be trusted by the
victim’s operating system, nor by traffic inspection tools between
the victim and C2 server. Naturally, direct certificate validation will
be unfeasible after switching to TLS 1.3 since certificates are end-
to-end encrypted. However, our proposed techniques will include
certificate size inference from the TLS 1.3 traffic flow, which will
play a key role in this context. No additional changes were made
to MS and Meterpreter besides modifying the server certificate
generator, fixing the desired TLS version and storing pre-master

secrets. As such, the traffic we generate should be similar to other
deployments using unaltered code and default options. An obvious
downside is the relative predictability of MS’s C2 traffic, and its im-
pact on detection performance. However, we do not train classifiers
to simply distinguish MS traffic from other types of traffic; instead,
we use MS as an example of a new malware family.

We captured traffic using both TLS versions and with short
and long server certificates – i.e. single self-signed or chained cer-
tificates, respectively. This resulted in 132.2K (1.2/short), 131.7K
(1.3/short), 264.1K (1.2/long), and 263.1K (1.3/long) TLS flows.

3.6 Real-World Datasets

UCNet. To test our methodology in a non-simulated environment
with real users, we created a new dataset consisting of anonymized
network traces collected from the university campus network (UC-
Net) at the host institution of some co-authors of this study. We
concentrated on monitoring specifically the wireless and VPN net-
works as we wanted to capture i.) numerous TLS flows, therefore
leaning us toward high user-density networks as opposed to other
internal campus networks, and ii.) collect TLS traffic exchanged
with the Internet, which most likely entails C2 communications.
Both the wireless network and the VPN network are designed to
serve 14K users each, including students, professors, and staff.
Data collection process. Given the sensitivity of analyzing traffic
from a real network, we have strictly followed all the guidelines
dictated by our Institutional Review Board (IRB) to guarantee that
the collected dataset does not reveal privacy-sensitive information
about users, services, and network infrastructure (see §9). For data
collection, we use an on-campus capture machine positioned above
the edge router that serves as the entry/exit point to the Internet
for the campus network. This machine is a Dell Inc. PowerEdge
R650xs server running Linux Debian Bullseye. Traffic is captured
with an Intel Ethernet Controller X710 10GbE SFP+ network inter-
face. The configuration for the capture interface is 10Gbase-SR/Full
Duplex with no auto-negotiation and a link speed of 10Gbps, and
it is connected to a switch that mirrors the inbound and outbound
traffic from the campus router. Using tcpdump, we collect raw net-
work traces and forward them to a second machine for processing,
through another network interface. After a capture is finished, it
is processed in two main steps: i.) Joy parses the captures into
TCP flows and anonymizes the extracted metadata, producing a
JSON-like output; and ii.) a Python3 script filters flows for TLS con-
nections, and extracts relevant features. LibreNMS is used to gather
traffic statistics via SNMP requests to multiple network devices.
Monitored traffic and dataset composition. We monitored the
campus network fromMarch 2 to April 2, 2024. During this time, we
conducted captures lasting 1 hour and 30 minutes, starting at 3 pm
every day fromMonday to Friday. The average time to produce each
trace, including capture and processing, is roughly 5 hours, with an
average capture size of 263GB. Some traces were excluded due to
memory-related errors during collection or interrupted connections
between our machines. Ultimately, we successfully collected 10
traces from various days, which were then assembled into a single
dataset of 10.1M flows. Specifically, 4,337,589 correspond to TLS
1.2 flows, and 5,769,412 relate to TLS 1.3. Appendix A, provides
additional insights on the data, such as statistics on traffic volume.



Extending C2 Traffic Detection Methodologies: From TLS 1.2 to TLS 1.3-enabled Malware RAID 2024, September 30-October 02, 2024, Padua, Italy

Table 2: Detection results for C-Basic, trained on the sets mentioned in section 3. Since all MS traffic is C2, only TPR percentages

are shown; all Tranco and DoHBrw traffic is non-C2, thus only TNR percentages are shown. Metrics refer to ‘test’ sets only.

Classifier MTA Tranco (TNR) MS TLS 1.2 (TPR) MS TLS 1.3 (TPR) DoHBrw
(Config.) TNR TPR TLS 1.2 TLS 1.3 short long short long (TNR)

C-Basic (DTC) 96.87 98.82 100.00 99.98 100.00 0.00 0.00 0.00 99.97
C-Basic (RF) 96.68 98.92 100.00 100.00 100.00 0.00 0.00 0.00 99.98

4 TLS 1.2-BASED TRAFFIC CLASSIFICATION

In this section, we first aim to expand our initial understanding
(see §2.2) on the detection of TLS 1.2 C2 traffic across datasets with
different characteristics. These results can then be used as a baseline
for comparing the performance of classifiers aiming to detect TLS
1.3 C2 traffic. Second, we perform feature importance analyzes and
explore how to leverage the resulting information for building TLS
1.3 traffic classifiers, while considering changes from TLS 1.2 to 1.3.

We build on the insights of Anderson et al. [5, 8], using TLS
record lengths as features for our classifiers. With TLS layered over
of TCP, sequences of TLS record lengths are more informative than
sequences of TCP segment sizes, since the latter may require packet
reassembly. In TLS 1.2, protocol-related messages are easily identi-
fied using the record type: 21 for Alert messages, 22 for Handshake
messages, and 23 for Application Data. Handshake messages are
not encrypted, allowing for information extraction; Alert messages
are encrypted, but their type is externally observable.

For classifiers, we use single decision tree classifiers (DTCs) [13]
and Random Forests (RFs) [12]. DTCs are easier to interpret, facili-
tating the selection of the most relevant features, and their decision
logic can be easily converted into rules for IDSs. RFs are ensembles
of DTCs, which have also been used for network traffic classification
tasks, but they are less interpretable than single DTCs [8].

4.1 Features: All TLS Records — C-Basic

For the first experiment, we train classifiers on sequences of TLS
records sizes, directions and types. We perform grid search with CV
to adjust model parameters and select the ones leading to the best
F1-score, to ensure a balance between classifier precision and recall.
For the DTC classifier, this results in: maximum tree depth (m.t.d.) of
16, considering all features, using the Gini impurity as split criterion,
and no class weighting. For the RF classifier: 70 estimators, m.t.d.
of 15, all features considered, and no class weighting as well.

The main purpose of this step is to identify key features in
the classification of C2 traffic. The feature importance is obtained
for each training CV split, with the 5 most important features for
the DTC classifier being, on average, Size0 (0.502), Size2 (0.278),
Size6 (0.122), Size1 (0.042) and Size4 (0.014). These values are
identical to the ones obtained for the RF classifier, and suggest that
Size0 and Size2 are the most influential to the classification of
C2 traffic. These are the sizes of the first and third TLS records,
typically corresponding to the Client Hello and Server Certificate
messages respectively. According to this insight, we prioritize the
consideration of these messages. Intuitively, Hello messages reflect
the selected cipher suites/extensions, while certificate chain sizes
suggest a pattern in the certificates used by C2 servers.

Table 2 demonstrates the results obtained by these classifiers.
TPRs of 98.82% and 100.0% are obtained for the MTA and ‘MS TLS
1.2 short’ test sets when using DTCs. However, no ‘MS TLS 1.2

0 2000 4000 6000 8000 10000 12000
Size (in bytes)

101

102

103

104

Nu
m

be
r o

f f
lo

ws

non-C2
C2

Figure 1: Histogram of the server certificate chain sizes across

the two classes for the MTA and Tranco datasets.

long’ flows were identified as C2. Testing against TLS 1.3 traffic
– Tranco, MS and DoHBrw – one can observe that it is almost
entirely classified as benign. We can thus conclude that, while C-
Basic detects MS traffic using default (short) server certificates
and default options, no MS flows are detected when using chained
certificates or when simply upgrading to TLS 1.3 (Tab. 2, in bold).

This strongly suggests that i.) C-Basic is ineffective with TLS
1.3 traffic, potentially due to the fundamental differences of the
protocols, classifying it mostly as negative/benign; and ii.) server
certificate chain sizes greatly influence the performance of C-Basic.
Finding 1: Sequences of record sizes can be extracted for both
TLS 1.2 and TLS 1.3 flows, but are not equivalent to one another.
Classifiers trained on TLS 1.2 traffic are unreliable on TLS 1.3.

4.2 Feature: Certificate Chain Size — C-Cert

Building on the relevance of certificate chain size for C2 traffic
classification, we depict the distribution of certificate chain sizes
for the MTA and Tranco dataset on Figure 1. It suggests a cor-
relation between C2-related TLS sessions, and smaller certificate
sizes. This can be explained by the usage of self-signed certificates
on connections established by malware, an uncommon practice
among legitimate services3. Importantly, this is something that can
be easily identified when Server Certificates are sent in plaintext.

Considering this key feature, we introduce the classifier C-Cert.
This classification works by extracting the certificate chain size
in bytes from each TLS session, and using this size as the single
feature to distinguish between C2 and non-C2. Grid search with
CV is used to adjust classifier parameters, this time selecting the
ones leading to the highest TPR score. For the DTC classifier, this
results in: m.t.d. of 1, using the Gini impurity as split criterion,
and class weights inversely proportional to class frequencies. For
the RF classifier: 40 estimators, m.t.d. of 5, using entropy as the
split criterion, and class weights inversely proportional to class
frequencies. We artificially add some error to C-Cert’s training,

3While self-signed certificates may be used for legitimate purposes, they are commonly
associated with ‘test’ or internal deployments, or services not meant to be publicly
accessible. Network administrators may add the expected internal services to an
allowlist, and then verify the exceptions.



RAID 2024, September 30-October 02, 2024, Padua, Italy Diogo Barradas, Carlos Novo, Bernardo Portela, Sofia Romeiro, and Nuno Santos

101

103

105

App Record #0 App Record #1 App Record #2 App Record #3 App Record #4

101 102 103 104 105

101

103

105

App Record #5

101 102 103 104 105

App Record #6

101 102 103 104 105

App Record #7

101 102 103 104 105

App Record #8

101 102 103 104 105

App Record #9

Size (bytes)

Nu
m

be
r o

f f
lo

ws

Tranco 1.2 MS 1.2 MS 1.3

Figure 2: Histogram of the first 10 record sizes in both directions (C2S and S2C), filtered by Application Data (content type 23).

Table 3: Detection results when considering server certificate

chain size (C-Cert) and application data records (C-Behav).

Classifier MTA Tranco MS TLS 1.2
(Config.) TNR TPR TLS 1.2 short long

C-Cert (DTC) 56.61 98.89 99.73 100.00 0.00

C-Cert (RF) 76.69 99.77 99.74 100.00 0.00

C-Behav (DTC) 93.90 95.64 99.93 98.97 98.85
C-Behav (RF) 91.58 97.59 99.85 99.16 99.03

to make it more robust to small variations and to errors that we
anticipate for certificate size inference on TLS 1.3.

Table 3 (top) shows that discriminating traffic based on this
feature alone yields performance rates identical to C-Basic, except
for the TNR on MTA’s test set. The TNR results of MTA might
intuitively indicate that the classifier is regularly identifying non-C2
traffic as C2. However, upon further inspection, multiple supposedly
non-C2 flows of MTA have been identified to actually correspond
to C2 traffic. Given MTA’s non-exhaustive groundtruth, one must
take these results with a grain of salt, which motivates the need for
multiple TNR result assessments on different datasets depending
on the reliability of their groundtruth. These values are nonetheless
aligned with our previous thesis that certificate sizes are playing a
significant role in C-Basic’s classification. When applying C-Cert
to MS traffic, all of MS TLS 1.2 ‘short’ traffic is correctly identified
as C2. However, note that traffic using ‘long’ certificate chains
bypasses detection completely (Tab. 3, in bold).

Certificate classification results could likely be improved if we
additionally considered certificate contents [34], e.g., through sub-
ject and issuer analysis, checking the certificate validity date, or
analyzing the Common Name for Domain Generation Algorithms.
Unfortunately, this information cannot be reasonably extracted in
TLS 1.3. Certificate sizes, however, can potentially be inferred.
Finding 2: There are patterns in server certificate sizes that can be
used for basic traffic classification. Smaller certificates are consistent
with the usage of self-signed certificates, which is the off-the-shelf
behavior of emulating a malware on Metasploit.

4.3 Features: Application Data Only — C-Behav

Alternatively, we consider a classification methodology focused
on size and direction of Application Data records (type 23). This
classifier is named C-Behav. By ignoring protocol-related messages
and metadata, we attempt to detect malware C2 based solely on the

application behavior reflected in its TLS communication. Figure 2
depicts the distribution of sizes of the 10 first records of Tranco TLS
1.2 andMS, after simply filtering for application data (record content
type 23). These histograms showcase a noticeable pattern in MS’s
application behavior, which may allow for its detection. Observe
that this pattern is completely unrelated to the server certificate.
As such, if this detection approach is successful, then modifying
certificate characteristics, or even TLS extensions or parameters,
would have reduced impact on detection, unlike fingerprint-based
detection, which can be susceptible to such changes. Furthermore,
classifiers based on behavior are expected tomore reliably detect off-
the-shelf C2: modifying application behavior would imply rewriting
malware application code, something that cybersecurity threats
such script-kiddies often abstain from doing. Indeed, despite more
challenging, application behavior-based detection may be more
directly transferable to TLS 1.3, as it upgrades TLS 1.2 by enhanc-
ing privacy of communication metadata, but does not impose any
changes on how the underlying applications communicate.

Classifiers are trained on directions and sizes of the first 10
application data records of each flow (20 features in total). We use
grid search with CV to adjust model parameters for F1-score. For the
DTC classifier: m.t.d. of 16, considering all features, using entropy
as split criterion, and no class weighting. For the RF classifier: 70
estimators, m.t.d. of 20, maximum number of features equal to the
square root of the total, and class weights inversely proportional to
class frequencies. We also artificially add some error to C-Behav’s
training, in an attempt to make it robust to small variations and
errors. We empirically chose a non-central chi-square distribution
with 3 degrees of freedom and a non-centrality parameter of 10.
Feature importance is obtained for each training CV split, with the
4 most important features being, on average, Size0 (0.705), Size1
(0.156), Direction1 (0.050) and Size2 (0.033) for the DTC classifier,
and Size0 (0.371), Size1 (0.187), Size2 (0.100) and Direction0
(0.085) for the RF classifier. This suggests that the first application
data records are the most influential for C2 traffic classification.

Table 3 (bottom) presents the results. The number of samples is
slightly smaller for this experiment, as some flows were discarded
for not containing any application data records. By comparing
results with C-Basic, C-Behav’s lower efficacy highlights the im-
pact of removing the information conveyed by handshake-related
records. However, contrary to previous results, performance on
MS TLS 1.2 is now similar for both server certificate chain sizes.
Note that, similarly to C-Basic, C-Behav was trained on a small



Extending C2 Traffic Detection Methodologies: From TLS 1.2 to TLS 1.3-enabled Malware RAID 2024, September 30-October 02, 2024, Padua, Italy

portion of ‘MS TLS 1.2 short’ traffic. However, only when removing
handshake-related records was the classifier able to detect ‘MS TLS
1.2 long’ traffic. This suggests that a behavioral pattern exists.

While TLS 1.3 does not fundamentally change how application-
data records are protected, these cannot be easily distinguished
from protocol-related records. This can also be observed in Figure 2,
where ‘MS TLS 1.2’ and ‘MS TLS 1.3’ “application data” records
(type 23) exhibit different distributions, despite corresponding to
the same application. This is because the TLS 1.3 ones may now be
carrying handshake messages. As such, these classifiers cannot be
adequately used on TLS 1.3 without first discarding protocol-related
records — Trying to do so yields a TPR of 0% on MS TLS 1.3 traffic,
both for DTCs and RFs, similarly to what happens with C-Basic.

Finding 3: Patterns in application behavior can be used for a C2
traffic classification that is independent of certificate size. However,
an “application behavior extraction” procedure is needed for TLS
1.3, since some application data records are, by design, carrying
handshake messages.

5 TLS 1.3 TRAFFIC ANALYSIS

We now analyze the structure and typical sequence of TLS 1.3
records, and propose methodologies to extract additional informa-
tion from traffic flows. These will be used to refine C-Cert, and to
effectively apply C-Cert and C-Behav classifiers to TLS 1.3 traffic.
All information related to TLS 1.3 specifications is based on [53].

5.1 TLS 1.3 Record and Handshake Dissection

Only Client Hello and Server Hello messages are sent in plaintext.
The following messages – further handshake messages, alerts, and
application data, that may contain privacy-sensitive information –
are wrapped in TLS 1.2 application records. Figure 3 illustrates how
TLS 1.3 encrypts these messages, which become opaque encrypted
communication. TLS 1.3 adds one extra byte to indicate the actual
record type, and 16 extra bytes for an authentication tag generated
by TLS 1.3’s authenticated encryption algorithms.

This format employed by TLS 1.3 has other consequences for
traffic classification: application behavior is harder to isolate from
protocol-related behavior. However, the Handshake process still
follows a fixed structure in the first TLS records after the TCP
handshake, which can be used to infer certificate sizes.

First, the Client sends a Client Hello with supported cipher suites,
extensions, and sharing keys. The Server responds with a Server
Hello, selecting a cipher suite and also sharing keys. Optionally, it
can also send a Change Cipher Spec (CCS) record. From then on,
exchanged records are encrypted. Then, the Server sends multiple
handshake messages: one for Encrypted Extensions (mandatory,
even though extensions themselves are optional); one for a Client
Certificate Request (optional); one for Server Certificate (optional); a
Certificate Verify record (mandatory when server certificate is sent);
and a final Finished message (mandatory). The client responds with
an optional CCS record, indicating that its following TLS records
are encrypted, and a mandatory Finished record. Optional Client
Certificate and Certificate Verify messages may be sent beforehand,
following the same logic as those for the server certificate. Finally,
if the handshake was successful, application data can be sent in

TLS 1.3 Record

“Handshake message”
X bytes<

Type
23

1 byte

HEADER (5 bytes) 👁
(X+22 bytes)

PAYLOAD (X+17 bytes) 🔐

Version
{3,3}
2 bytes

Length
X+17
2 bytes

ContentType
22

1 byte

AuthTag
...

16 bytes

Figure 3: TLS 1.3 record format with illustrative fields/sizes.

both directions. Additional opaque protocol-related messages may
be interleaved with opaque application data records.
Caveats.When present, the server certificate is always the third
to last handshake message sent by the server. These messages are
somewhat independent of TLS records and may be sent all together
in one record, or spread across multiple records; a single message
may be fragmented over multiple records, adding uncertainty to
certificate size inference, or application behavior isolation.

An extension has been proposed enabling support for certificate
compression in TLS 1.3 [28]. From our observation, compressed
non-self-signed certificates are still larger than uncompressed self-
signed certificates. Indeed, the procedure for certificate size infer-
ence is mostly unaffected, since the Compressed Certificate message
directly replaces the Certificate message. The inferred size will then
correspond to the (smaller) length of the compressed certificate.

5.2 Certificate Size Inference

Given the previously outlined handshake process, and considering
the most commonly observed TLS 1.3 traffic in our curl captures
(server certificate sent, no client authentication), we propose a
method for server certificate size inference. This is based on the
insight that, although in encrypted form, this certificate must be
sent in a well-defined interval: necessarily after the Server Hello
record (or CCS record, when present); and necessarily before the
client’s CCS record (optional) or application data records.

Towards this goal, we isolate the records that meet these criteria.
If a single record is observed, then it must contain all of the multiple
handshake messages mentioned previously. While the server cer-
tificate cannot be isolated from the other messages in ciphertext, its
size may be estimated by discounting the size of the other messages
– the size of the other messages is also an estimation, but with less
variation. Otherwise, if multiple records are observed, then either:
i.) the messages are fragmented across multiple records, and their
payload sizes must be added together, subtracting the 17 extra bytes
per record, and dealt with as if they were a single record; or ii.)
each handshake message is sent in its own individual record with
only the certificate possibly fragmented. This can be detected by
checking if the last record of the set has a size compatible with a
Finished message. In the latter case, the certificate message is likely
in the third to last record, or fragmented across the second and the
third to last records of the set. This means that subtracting the size
of other handshake messages is not necessary, since handshake
messages are already sent separate TLS records. This certificate
inference logic is illustrated in Figure 4 — boxes in light orange
represent encrypted handshake records, sent in the S2C direction
after the Server Hello, and before any C2S application data records.
Record sizes are observable, but not their content.
Handshakemessages.We now describe the encrypted handshake
messages sent by the server [53], as well as the sizes we observed:
• Encrypted Extensions (EE) message: 6 bytes for type and length
indications, followed by optional extensions sent in response to
a client request. Our curl captures suggested the following three



RAID 2024, September 30-October 02, 2024, Padua, Italy Diogo Barradas, Carlos Novo, Bernardo Portela, Sofia Romeiro, and Nuno Santos

extensions to be the most frequently used. Server_name is an
empty (all zeros) extension taking up 4 bytes, found in 80.0%
of our TLS 1.3 sessions. Supported_groups is chosen from a
set sent by the client, taking 6 bytes for the header and 2 bytes
per group. It was found in 13.4% of our sessions, commonly
selecting 2 groups: 10 bytes. ALPN is chosen from a list sent by
the client and takes up either 9 or 15 bytes on a header and a
string, depending if the application layer protocol is HTTP/2
or HTTP/1.1. It is very common in our observations, found in
96.9% of sessions, and mostly HTTP/2 resulting in 9 bytes.

• Certificate message: an 8 bytes header, considering type and
length indication as well as an empty certificate request context.
This is followed by a chain of certificates, usually with 5 extra
bytes for each certificate in the chain. This results in a size of
8 +𝑁 + 5 ×𝐶 , where 𝑁 is the certificate chain size in bytes and
𝐶 is the number of chain certificates.

• Certificate Verify message: a 6 bytes header to indicate type,
length and signature algorithm, and a signature. The signature’s
length depends on the algorithm. In our observations, this is
70 to 72 bytes for ECDSA (ecdsa_secp256r1_sha256, used
in 39.8% of sessions), and 256 (58.8%) or 512 (1.4%) bytes for
RSASSA-PSS (rsa_pss_rsae_sha256) and depending on the
RSA key length. No other signature lengths were observed.

• Finished message: 36 or 52 bytes, depending on selected cipher
suite. This includes a 4 bytes header, and 32/48 bytes of verify
data (SHA256/348). The algorithm used is directly observable
in plaintext, in the Server Hello record.

Given the public parameters of the Client Hello, we may further
narrow down our guess of the overhead introduced by the TLS
handshake. E.g., if the client uses the ALPN extension, the server
will likely include ALPN in its EE and select the client’s preferred
(first) application layer protocol. Otherwise, if ALPN is missing, it
should not appear in the server’s EE either. Using fewer extensions
and algorithm possibilities in the Client Hello will lead to smaller,
more predictable server authentications, facilitating fingerprinting.
Inference process and error assessment. Given the sizes stated
before, a minimum of 6+8+6+70+36 = 126 bytesmust be discounted
from the total handshake messages size. Preliminary evaluation has
shown that 132 bytes is a value leading to a low inference error, due
to the combination of extensions, signature and hash algorithms
most commonly present in server responses. 17 bytes must also
be discounted from each TLS record, accounting for the content
type and authentication tag. After filtering traffic for valid TLS 1.3
sessions, we isolate the first application data records (type 23) in
the S2C direction before any C2S application data records are seen.
These presumably contain the Handshake messages.

If one single application data record is isolated, it should contain
all Handshake messages; in that case, we discount 132+17 bytes
from that record size to obtain the inferred certificate size. If more
than one record was isolated but the first one is larger than 300
bytes, we probably have multiple handshake messages sent together
as a single message, but fragmented in multiple records. In that
case we sum the sizes of all the record fragments we isolated and
discount 17 bytes per record plus the 132 extra bytes. Otherwise, if
the first record is not 300 bytes long, then each handshake message
was probably sent in its own record, with the certificate possibly
fragmented. In that case, we may discard the Finished record based

...

“app data”

1 HS message per TLS record

1 TLS record, multiple HS messages

extensions

server certificate

certverify

finished

extensions certificate finishedcertverify

extensions cert_fragment_1

cert_fragment_2

cert_fragment_3 finishedcertverify

👁🔐

fragmented HS messages

client hello

server hello

Figure 4: Certificate size inference process. Arrows depict

TLS records, orange arrows depict Application Data records.

Encrypted Handshake (HS) messages may be divided into

application data records in one of multiple ways.

on its size, and every record after it. The 300 bytes threshold was
empirically chosen to distinguish an isolated EE message from a
fragment of a larger message. Then, if we’re left with more than 3
records, we sum the presumable certificate fragments, discounting
each record overheads. If we’re left with 3 records or fewer, we
simply return the size of the largest one, also discarding the record
overhead. This process is depicted as a diagram in Appendix B.

5.3 Application Behavior Extraction

To enable an external detection based on application behavior, we
must look at the sequence of TLS records that carry application
data in isolation. While isolating application records in TLS 1.2 is as
simple as looking at the TLS record metadata, in TLS 1.3 the record
types are encrypted, and actual application data records are not
immediately discernible from handshake and other non-application
records. Our process of isolating application behavior in TLS 1.3
is twofold: first we discard handshake records by leveraging the
previous characterization used for certificate size inference. then,
we try to identify and discard records carrying Post-Handshake
and Alert messages, since they are also protocol-related and thus
not actual data explicitly sent by the application.

Handshake records are removed by discarding records until the
first application data record in the C2S direction, which presumably
contains the client’s Finished handshake message. If no application
data records are found in the C2S direction, the flow is ignored
for lack of confirmation of a successful handshake. Flows are also
ignored if no records are left after discarding the handshake.

Regarding Alert messages, we discard the last record of each
sequence if they are exactly 19 bytes long, since that is the expected
size of a Close Notify alert message. Other alerts are less common
as they result from errors and lead to an abortive closure of the con-
nection. We then focus on Post-Handshake Messages, which may
be sent at any point after the Finished handshake messages. They
are frequently used to issue New Session Tickets (NSTs) that allow
for session resumption. From our observation, NSTs are usually
sent in the first S2C records, often in pairs, with sizes ranging from
57 to 281 bytes each. A single record may carry multiple NSTs.

We tag records as likely NSTs if they appear near the beginning
of a TLS session in the S2C direction, and if they’re not the only
response to a previous client request. Specifically, if a S2C record is



Extending C2 Traffic Detection Methodologies: From TLS 1.2 to TLS 1.3-enabled Malware RAID 2024, September 30-October 02, 2024, Padua, Italy

seen before any C2S application data record, it is tagged for removal
together with all other consecutive S2C records of the same size.
Otherwise, if we see a C2S request for which there are multiple S2C
records in response, the first response is marked as NST, together
with other consecutive records of the same size. The exceptions are
if those S2C records are <60 or >600 bytes, in which case no records
are discarded. This range accounts for the possibility of two NSTs
being in a single record. There are other Post-Handshake Messages
besides NSTs, used for client authentication or cryptographic key
updates, but these have not been observed in our captures.

5.4 Results

Using both of the methods we propose – Certificate Size Inference
and Application Behavior Extraction – our previous classifiers C-
Cert and C-Behav can now be applied to (parsed) TLS 1.3 traffic.
Impact of certificate size inference. By inferring server certifi-
cate sizes from the TLS 1.3 test flows, and then feeding them to the
C-Cert classifiers, we obtain the results on Table 4 (top). While
there seems to be a decline in performance for Tranco traffic, par-
ticularly for the DTC classifier, the RF classifier presents TNRs of
over 99% on Tranco and DoHBrw traffic while also reliably iden-
tifying the MS TLS 1.3 ‘off-the-shelf’ malware (short certificates)
traffic. These results show that classification performance is similar
to the one obtained for TLS 1.2 (Table 3), confirming that a use-
ful classification feature is being successfully extracted from TLS
1.3 traffic. This is achieved without sacrificing TNR, an important
characteristic for real-world applicability of IDS systems.

However, as expected, MS traffic using ‘long’ certificate chains is
misclassified. Recall that these flows were added to assess classifier
efficacy in a scenario where a knowledgeable adversary artificially
increases certificate sizes to avoid detection.
Finding 4: Server certificate sizes can be reasonably inferred for
most TLS 1.3 traffic. This feature can then be used for efficient TLS
1.3 traffic classification, with very high TNR values.
Impact of application behavior extraction. Our results when
applying application behavior extraction to TLS 1.3 traffic, followed
by classification using C-Behav, are depicted in Table 4 (bottom).
Performance on the Tranco and DoHBrw test sets yields TNRs over
99% for the RF classifier. As expected, performance on the MS test
set is slightly lower, with TPRs of around 93%. When compared to
the results from Table 3 we see a performance toll of around 6%,
which can be attributed to the errors and uncertainties inherent to
the application behavior extraction procedure.

Most importantly, C-Behav’s performance on TLS 1.3 is mostly
independent of the server certificate sizes, allowing for ‘MS TLS 1.3
long’ to be correctly identified.We highlight that only a few ‘MS TLS
1.2 short’ flows were used for training, as previously explained. This
demonstrates that C-Behav can be used to effectively circumvent
countermeasures to C-Cert that artificially increase the size of
certificates. Intuitively, and as is common in intrusion detection
systems, we expect the efficacy of C-Behav to drop if additional
manipulation is done at the application level, e.g. adapting the
malware to pad messages erratically.
Finding 5: After discarding protocol-related records, we can feed
TLS 1.3 application data to classifiers trained on TLS 1.2 application
data, yielding promising results for real-world applicability.

Table 4: Detection results for C-Cert and C-Behav, after

certificate size inference and application behavior extraction.

Classifier Tranco MS TLS 1.3 DoHBrw
(Config.) TLS 1.3 short long (TNR)

C-Cert (DTC) 94.91 100.0 0.00 99.61
C-Cert (RF) 99.91 100.0 0.00 99.48

C-Behav (DTC) 98.64 93.93 93.54 97.27
C-Behav (RF) 99.78 93.87 93.21 99.42

6 REAL-WORLD TRAFFIC CAPTURE RESULTS

To find out whether our proposed classifiers and inference methods
can be used on real-world Internet traffic, we test them on UCNet.
We assume that UCNet’s traffic is all non-C2 related, which might
not be completely true – some campus users might have malware-
infected machines. We present values for (true) negative rates only.
We do not show results forC-Basic applied to UCNet, since we have
already established that it is not useful on TLS 1.3 traffic, classifying
it mostly as benign (see §4.1). Its high TNR would be an artificially
good result on UCNet, with little relevance.
Applying C-Cert and certificate size inference. C-Cert is
applied to TLS 1.2 traffic directly, or to TLS 1.3 traffic by means
of certificate size inference. From the over 4.3M TLS 1.2 flows of
UCNet, server certificates could not be extracted on roughly 0.6M.
The other 3.7M flows whose certificates were successfully extracted
were classified using C-Cert (DTC/RF), both with 99.89% TNR.

Using certificate size inference on TLS 1.3 traffic, we were able to
obtain certificate sizes for 3.2M flows (other 1.4M flows used PSKs,
nearly 1M had an “Hello Retry Request” and certificate size infer-
ence failed for 144K flows). The inferred sizes were given to C-Cert
(DTC/RF), resulting in TNRs of 99.07%/99.13% respectively. The
roughly 30K flows positively identified by the DTC classifier were
found to correspond to 1412 clients and 656 server IPs. Almost 27K
of these flows feature no SNI, and the remaining ones correspond
to 165 SNIs, with a distribution that is far from uniform: e.g., only
37 SNIs have more that 2 flows. These TNR results are similar to the
inverse false-positive rates achieved by other IDS systems [22, 61],
which suggests their potential for practical applicability.

When analyzing positive results, the sysadmin conducting the
data capture found multiple SNIs consistent with Domain Genera-
tion Algorithms (DGAs), typically associated with malware activity.
These are likely true positives. Interestingly, the RF classifier iden-
tified fewer DGA-related domains. This highlights the difficulty in
selecting the “best” classifier when facing a noisy groundtruth.
ApplyingC-Behav and application behavior extraction.Once
again, C-Behav can also be applied to TLS 1.2 traffic directly, or
to TLS 1.3 traffic after using application behavior extraction. 192K
TLS 1.2 flows and 8.8K TLS 1.3 flows were discarded for having no
application data records. 258K TLS 1.3 flows were also discarded
for having no application data after applying behavior extraction.
C-Behav (DTC/RF) had negative rates of 90.39%/95.69% on TLS
1.2 traffic, and 92.28%/96.35% on TLS 1.3 traffic. Interestingly, the
metrics for TLS 1.2 seem to closely lag behind the ones for TLS 1.3.
This suggests that the poor metrics are not necessarily related to
our application behavior extraction, but rather to some legitimate
UCNet traffic not being accurately represented by our training data.
Note that classifiers were not trained on UCNet traffic.



RAID 2024, September 30-October 02, 2024, Padua, Italy Diogo Barradas, Carlos Novo, Bernardo Portela, Sofia Romeiro, and Nuno Santos

Incident discovery. An interesting outcome of this experimental
validation was the discovery of a malware incident within UCNet’s
traffic, while analyzing the positives pointed out by the C-Cert
(DTC) classifier. After noticing the seemingly DGA-related SNIs,
server domains and IP addresses were checked against VirusTo-
tal [40], a malware intelligence aggregator. Initially the server IP
was not identified as malicious. A few days later, however, it had
been flagged by multiple security vendors (Antiy-AVL, Criminal IP,
and SOCRadar), according to the sysadmin in charge of the data cap-
ture. C-Cert’s results, combined with an expert’s analysis, allowed
for early detection of this malicious activity, which took place over
TLS 1.3. Further details can be found in Appendix C.

7 DISCUSSION

We now discuss the performance of our inference methods and
classifiers on the curl captures and UCNet dataset.
Inference performance. For certificate size inference, we discount
132 bytes only when the multiple handshake messages cannot be
externally isolated, as discussed in Appendix B. This is a conser-
vative estimate based on our curl captures, close to a minimum of
126 bytes. It allows us to obtain the correct certificate size for more
than 50% of the curl TLS 1.3 sessions, within a small error margin
(⩽27 bytes) for over 80% of those sessions, with an average error
of 1.0%. The mean/maximum error observed was 34.33/467 bytes,
with inferred sizes always equal to or greater than actual certificate
sizes. As errors inflate sizes, they usually lead to false negatives.

The range of 60 to 600 bytes for records carrying NSTs also stems
from our curl capture: after discarding Handshake and Close No-
tify messages, 76.67% of TLS 1.3 flows still had extra records to be
removed. On average, these flows had 1.42 extra records each, with
a size of 391.48 bytes/record. The NST record discarding methodol-
ogy was correct for 79.7% of flows, with the remaining 13.8%/6.5%
having too many/not enough records removed, respectively. On
average, 1.08/1.53 too many/few records were removed. Errors in
this procedure will cause issues in behavior-based classification.
However, not using this best-effort approach would, on average,
cause a larger drop in classification performance.
UCNet results discussion. Looking at C-Cert’s predictions, some
flows were confirmed to be actual false positives, and blocking
them would likely have caused disruption to legitimate services.
Nonetheless, legitimate domains and IP addresses can be added to
an “allowlist” to prevent unnecessary alerts. Given the non-uniform
distribution of positive flows per IP addresses and SNIs, a succinct
allowlist could have substantial impact on the number of false alerts.

C-Behav also flagged as positive many UCNet flows belonging
to non-malicious apps that were not appropriately represented in
our training dataset. Improved results are expected when training
on some of the target network’s traffic. In particular, the “malware
incident” was not flagged by C-Behav, as its behavior was not
consistent with the trained patterns – our C2 ground truth mostly
started with application data records in the C2S direction, while
most of this malware’s flows started with a S2C application record.

7.1 Limitations

Errors and failures. Protocol errors or handshake failures lead to
connection termination, but TLS records exchanged until then can

still be processed/used for classification. Servers may also send a
“Hello Retry Request” when more information is needed to proceed
with the handshake. The client will then send a new Client Hello
on the same connection. Due to limitations in our network capture
processing software – which only extracts metadata from the first
Client Hello, ignoring the second one –we discard flowswith “Hello
Retry Request” messages. This issue stems from a limitation on the
network capture processing, not from the proposed methodology.
Lost packets. TCP segments sent/received by the communicating
parties but unseen by the capture process may cause some of the
flow’s TLS records to be lost, negatively affecting classification.
This is an engineering issue that we do not address.
Deviation from TLS specification. The software we use may fail
to process flows from non-standard TLS implementations. These
might get flagged by non-TLS-specific traffic anomaly detectors [15].
Padding. TLS record padding [53] is the most direct countermea-
sure to our approach, as it masks the handshake process by hid-
ing the size of the server’s handshake messages, and/or introduc-
ing artificial variance in the sent application data. Padding hand-
shake records is expected to reduce the efficacy of C-Cert. In turn,
padding application data records would disrupt C-Behav.

Randomly padding messages would be a countermeasure to C-
Behav as is, but one might be able to train the classifier with a
richer ground truth to consider this variation. As a more sophisti-
cated alternative, one might use padding to mimic the behavior of
popular applications and evade classifier adaptation. This should
be effective, albeit much more complex to implement by an ad-
versary. One should also keep in mind that padding detection via
statistical analysis is possible [24, 60], and in encrypted traffic anal-
ysis, padding countermeasures have been shown to be avoidable
altogether [14]. We believe that, while padding is an effective C2
adaptation to the current version of the classifiers, countermeasures
against said padding are also a reasonable future optimization.
PSK-based authentication. The usage of PSK-based authenti-
cation can be detected by outside observers, such as IDSs. A PSK,
established out of band or issued by the server in a previous connec-
tion, allows for skipping most of the encrypted handshake. Server
certificate size inference would make no sense, but application be-
havior extraction should be largely unaffected. If the flow carrying
the initial session was also observed, perhaps both could be corre-
lated; otherwise, sessions using PSKs could be blocked altogether,
avoiding the potential risks of a weaker handshake analysis at the
expense of additional overhead, or potential disruption.
Client authentication. Certificate-based client authentication
can be performed during the handshake, or afterwards using Post-
Handshake Messages. Authenticating during handshake increases
the size of S2C handshake messages (due to the “Certificate Re-
quest” message), increasing the error for server certificate size
inference. A larger client response (which then contains “Certifi-
cate” and “Certificate Verify” messages) can be used as an indicator
of client authentication usage, triggering adjustments for the server
certificate size inference. Post-Handshake Authentication can be
performed at any time after the “Finished” messages, and would
be more challenging to isolate from application behavior. However,
given that this feature was not available in previous TLS versions,
using it requires deliberate adaptation.



Extending C2 Traffic Detection Methodologies: From TLS 1.2 to TLS 1.3-enabled Malware RAID 2024, September 30-October 02, 2024, Padua, Italy

8 RELATEDWORK

Traffic fingerprinting. TLS fingerprinting aims to identify appli-
cations or libraries by comparing their observable behavior with
well-known fingerprints [31]. Shen et al. [56] propose traffic clas-
sification for TLS 1.2 flows based on lengths of the certificate and
the first application data packet combined, using clustering and
Markov chains. C-BEHAV expands on this insight, considering in-
stead multiple application data packet lengths, but follows a differ-
ent classification methodology. Exploring the use of Markov chains
and clustering of n-grams of application data length is an interest-
ing future work, as an alternative to C-BEHAV. Regarding TLS 1.3,
Anderson [4] suggests that fingerprinting will still be effective in a
foreseeable future, due to its backwards compatibility with TLS 1.2.
A frequently used method for TLS fingerprinting is JA3/JA3S [3],
which considers metadata such as TLS versions, cipher suites and
extensions. Alternatively, fingerprinting may also be applied to
encrypted traffic, being typically based on machine learning and
using TLS flows as classification objects [2, 48]. Mavroudis and
Hayes [44] show that one can infer the specific webpage being
accessed by a user on a website over TLS 1.3, given a previously
collected labeled set of TLS 1.3 webpage captures. Recently, Xue et
al. [62] demonstrated fingerprinting in a protocol-agnostic manner.
Their techniques are complementary to C-Behav, suggesting novel
methodologies for characterizing our isolated application behavior.
Malware TLS traffic. To detect the usage of TLS by malware,
several works [7, 8, 50] propose machine learning algorithms and
features including sequences of packet lengths and packet inter-
arrival times, and TLS metadata. In 2018, malware’s TLS usage had
been found to be distinct from benign usage regarding TLSmetadata
and parameters, e.g., extensions, key lengths [9]. A recent study on
TLS-basedmalware detection [34] found 10 approaches using server
certificate analysis for detection. However, these methods cannot be
applied to TLS 1.3- or ECH-using flows. Additional approaches [25,
42] do not consider stream attributes that are blocked by TLS 1.3.
Our work shows that separating these attributes in TLS 1.3 flows is
not trivial, and propose complementary methods to these classifiers
towards efficient malware detection on TLS 1.3 flows.

Specifically for TLS 1.3 flows, Lin et al. [41] propose a classifica-
tion method capable of dealing with TLS 1.3 traffic. However, they
use a small evaluation dataset that contains mostly unencrypted or
non-TLS traffic. Gomez et al. [29] study clustering-based detection
of malicious TLS flows, considering TLS 1.3. The authors follow an
unsupervised approach, while we follow a supervised approach in-
stead. However, given that their feature extraction and classification
methodology are closed source, and they used proprietary datasets
for validation, we cannot assess the efficacy of their approach on
our datasets, or compare our classifiers in their experimental setting.
Our early experiments with clustering-based detection suggest that
our methods for certificate inference and behavior extraction can
also be used as a complement to unsupervised methodologies.

Anderson and McGrew [8] are among the makers of the Joy tool
used for feature extraction, which also has classification capabilities.
However, an early evaluation of Joy’s classification on our data
yielded metrics lagging behind the approach followed in our paper:
almost no MS traffic detected in conditions similar to C-Basic (TPR
under 1%), and many false positives for DoHBrw (TNR of 87.16%).

9 ETHICAL CONSIDERATIONS

Responsible data collection. Our “in-house” datasets were cap-
tured in controlled environments without real users. For UCNet,
special care was taken to protect the privacy of campus users.
Traffic classification is performed on anonymized data with no
identifiable/personal information. Permission for data capture and
classification was obtained from the campus Department of In-
formatics Services. The entire data collection, anonymization and
treatment occurs on two restricted-access campus machines. Only
an authorized subset of IT staff can access these machines. Source
and destination IP addresses are anonymized using Joy, and raw
data always stays within the campus network. The collected data
was solely used for validating our previously trained classifiers.
Disclosed SNIs are publicly accessible, within top-level domains.
Private domains from non-propagated DNS zones are not disclosed.
Risk of malicious certificate generation. The certificate manip-
ulation we introduced in Metasploit may bypass simple (or poorly-
implemented) detectors based on certificate size or certificate chain
length. We argue that certificate-based detection should be used as
additional information, but not as a network’s sole defense.
Risk of tracking usage. Our classification methodology exploits
patterns revealed by the TLS 1.3 communication protocol. While
similar approaches have been exploited in the past for tracking or
surveillance purposes [53] (E.3), our techniques are mostly focused
on distinguishing malicious from benign traffic through the infer-
ence of self-signed certificates’ characteristics, and we do not at-
tempt to infer other latent information (e.g., user browsing habits).

10 CONCLUSION

We propose methods for certificate size inference and application
behavior isolation on TLS 1.3 encrypted flows. Our results suggest
the feasibility of these methods, and their usefulness for malware
C2 traffic classification. The proposed classifiers achieve TPRs of
100% and 94% with certificate- and behavior-based detection respec-
tively. We validate that these classifiers do not sacrifice TNR, both
showcasing values of roughly 99% on existing datasets. Further-
more, the same classifiers achieve values of 99.15% and 96.35% on a
real-world dataset collected on a university campus, respectively.
Additionally, these approaches for information extraction in TLS 1.3
flows can also be used as a building block for other traffic analysis
tasks, such as stream- or graph-based network analysis.

ACKNOWLEDGMENTS

We express our gratitude to our shepherd and the anonymous re-
viewers for their insightful comments. Special thanks to Alexandre
Francisco, head of Network and Systems Administration at IST, and
his team members Rodrigo Cunha and Jorge Matias, for their in-
valuable cooperation and assistance in collecting the UCNet dataset.
This work was supported by Fundação para a Ciência e Tecnolo-
gia (FCT) grants UIDB/50021/2020 and 2021.08532.BD, by IAPMEI
grant C6632206063-00466847 (SmartRetail), by NSERC grant RGPIN-
2023-03304, and co-financed by Component 5 of core funding for
Technology and Innovation Centres (CTI), integrated in the Re-
covery and Resilience Plan within the scope of the Recovery and
Resilience Mechanism (MRR) of the European Union (EU), framed
in the Next Generation EU, for the period 2021 - 2026.



RAID 2024, September 30-October 02, 2024, Padua, Italy Diogo Barradas, Carlos Novo, Bernardo Portela, Sofia Romeiro, and Nuno Santos

REFERENCES

[1] abuse.ch. 2023. SSL Blacklist (SSLBL). https://sslbl.abuse.ch/
[2] Iman Akbari, Mohammad A. Salahuddin, Leni Ven, Noura Limam, Raouf Boutaba,

Bertrand Mathieu, Stephanie Moteau, and Stephane Tuffin. 2021. A Look Behind
the Curtain: Traffic Classification in an Increasingly Encrypted Web. Proceedings
of the ACM on Measurement and Analysis of Computing Systems 5, 1 (Feb. 2021),
1–26. https://doi.org/10.1145/3447382

[3] John Althouse. 2019. TLS Fingerprinting with JA3 and JA3S. https://engineering.
salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967/

[4] Blake Anderson. 2019. TLS Fingerprinting in the Real World. https://blogs.cisco.
com/security/tls-fingerprinting-in-the-real-world

[5] Blake Anderson, Andrew Chi, Scott Dunlop, and David McGrew. 2019. Limit-
less HTTP in an HTTPS World: Inferring the Semantics of the HTTPS Proto-
col without Decryption. In Proceedings of the Ninth ACM Conference on Data
and Application Security and Privacy (Richardson, Texas, USA) (CODASPY ’19).
Association for Computing Machinery, New York, NY, USA, 267–278. https:
//doi.org/10.1145/3292006.3300025

[6] Blake Anderson and David McGrew. 2016. Identifying Encrypted Malware Traffic
with Contextual Flow Data. In Proceedings of the 2016 ACMWorkshop on Artificial
Intelligence and Security. ACM, Vienna Austria, 35–46. https://doi.org/10.1145/
2996758.2996768

[7] Blake Anderson and David McGrew. 2016. Identifying encrypted malware traffic
with contextual flow data. In Proceedings of the 2016 ACM workshop on artificial
intelligence and security. 35–46.

[8] Blake Anderson and David McGrew. 2017. Machine Learning for Encrypted
Malware Traffic Classification: Accounting for Noisy Labels and Non-Stationarity.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’17). Association for Computing Machinery,
New York, NY, USA, 1723–1732. https://doi.org/10.1145/3097983.3098163

[9] Blake Anderson, Subharthi Paul, and David McGrew. 2018. Deciphering mal-
ware’s use of TLS (without decryption). Journal of Computer Virology and Hacking
Techniques 14, 3 (Aug. 2018), 195–211. https://doi.org/10.1007/s11416-017-0306-6

[10] Stefan Axelsson. 2000. The base-rate fallacy and the difficulty of intrusion
detection. ACM Transactions on Information and System Security (TISSEC) 3, 3
(2000), 186–205.

[11] Ofek Bader, Adi Lichy, Chen Hajaj, Ran Dubin, and Amit Dvir. 2022. MalD-
IST: From Encrypted Traffic Classification to Malware Traffic Detection and
Classification. In 2022 IEEE 19th Annual Consumer Communications & Network-
ing Conference (CCNC). IEEE Press, Las Vegas, NV, USA, 527–533. https:
//doi.org/10.1109/CCNC49033.2022.9700625

[12] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (Oct. 2001), 5–32.
https://doi.org/10.1023/A:1010933404324

[13] L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. 1984. Classification and
Regression Trees. Taylor & Francis.

[14] Jonas Bushart and Christian Rossow. 2020. Padding ain’t enough: Assessing the
privacy guarantees of encrypted DNS. In 10th USENIX Workshop on Free and
Open Communications on the Internet (FOCI 20).

[15] Brian Caswell, Jay Beale, and Andrew Baker. 2007. Snort intrusion detection and
prevention toolkit. Syngress.

[16] Minhaz Chowdhury, Nafiz Rifat, Shadman Latif, Mostofa Ahsan, Md Saifur Rah-
man, and Rahul Gomes. 2023. ChatGPT: The Curious Case of Attack Vectors’
Supply Chain Management Improvement. In 2023 IEEE International Conference
on Electro Information Technology (eIT). IEEE, 499–504.

[17] Cisco Systems. 2019. cisco/joy: A package for capturing and analyzing net-
work flow data and intraflow data, for network research, forensics, and security
monitoring. https://github.com/cisco/joy

[18] Cloudflare. 2024. 1.1.1.1 — The free app that makes your Internet faster. https:
//one.one.one.one/family/

[19] curl. 2023. command line tool and library for transferring data with URLs.
https://curl.se/

[20] Christian J. Dietrich and Christian Rossow. 2009. Empirical research of IP blacklists.
Vieweg+Teubner, Wiesbaden, 163–171. https://doi.org/10.1007/978-3-8348-9283-
6_17

[21] Brad Duncan. 2024. Malware-Traffic-Analysis.net. https://malware-traffic-
analysis.net

[22] Yebo Feng, Jun Li, and Devkishen Sisodia. 2022. Cj-sniffer: Measurement and
content-agnostic detection of cryptojacking traffic. In Proceedings of the 25th
International Symposium on Research in Attacks, Intrusions and Defenses. 482–494.

[23] Fraunhofer FKIE. 2023. Meterpreter (malware family) – malpedia. https:
//malpedia.caad.fkie.fraunhofer.de/details/win.meterpreter

[24] Xinwen Fu, Bryan Graham, Riccardo Bettati, and Wei Zhao. 2003. On effective-
ness of link padding for statistical traffic analysis attacks. In 23rd International
Conference on Distributed Computing Systems, 2003. Proceedings. IEEE, 340–347.

[25] Zhuoqun Fu, Mingxuan Liu, Yue Qin, Jia Zhang, Yuan Zou, Qilei Yin, Qi Li,
and Haixin Duan. 2022. Encrypted malware traffic detection via graph-based
network analysis. In Proceedings of the 25th International Symposium on Research
in Attacks, Intrusions and Defenses. 495–509.

[26] Sean Gallagher. 2021. Nearly half of malware now use TLS to conceal communi-
cations. https://news.sophos.com/en-us/2021/04/21/nearly-half-of-malware-
now-use-tls-to-conceal-communications/

[27] Ibrahim Ghafir, Vaclav Prenosil, Mohammad Hammoudeh, Liangxiu Han, and
Umar Raza. 2017. Malicious SSL Certificate Detection: A Step Towards Advanced
Persistent Threat Defence. In Proceedings of the International Conference on Future
Networks and Distributed Systems (Cambridge, United Kingdom) (ICFNDS ’17).
Association for Computing Machinery, New York, NY, USA, Article 27. https:
//doi.org/10.1145/3102304.3102331

[28] Alessandro Ghedini and Victor Vasiliev. 2020. TLS Certificate Compression. RFC
8879. https://doi.org/10.17487/RFC8879

[29] Gibran Gomez, Platon Kotzias, Matteo Dell’Amico, Leyla Bilge, Juan Caballero,
and Vincenzo Conti. 2023. Unsupervised Detection and Clustering of Malicious
TLS Flows. Security and Communication Networks 2023 (jan 2023), 17 pages.
https://doi.org/10.1155/2023/3676692

[30] Joonseo Ha and Heejun Roh. 2021. Experimental Evaluation of Malware Family
Classification Methods from Sequential Information of TLS-Encrypted Traffic.
Electronics 10, 24 (Jan. 2021), 3180. https://doi.org/10.3390/electronics10243180
Number: 24 Publisher: Multidisciplinary Digital Publishing Institute.

[31] Habdul Hazeez. 2022. What is TLS fingerprinting? https://fingerprint.com/blog/
what-is-tls-fingerprinting-transport-layer-security/

[32] Ralph Holz, Johanna Amann, Abbas Razaghpanah, and Narseo Vallina-Rodriguez.
2019. The Era of TLS 1.3: Measuring Deployment and Use with Active and Passive
Methods. arXiv:1907.12762 http://arxiv.org/abs/1907.12762

[33] Ralph Holz, Jens Hiller, Johanna Amann, Abbas Razaghpanah, Thomas Jost,
Narseo Vallina-Rodriguez, and Oliver Hohlfeld. 2020. Tracking the deployment
of TLS 1.3 on the web: a story of experimentation and centralization. ACM
SIGCOMM Computer Communication Review 50, 3 (July 2020), 3–15. https:
//doi.org/10.1145/3411740.3411742

[34] Kinan Keshkeh, Aman Jantan, Kamal Alieyan, and Usman Mohammed Gana.
2021. A Review on TLS Encryption Malware Detection: TLS Features, Machine
Learning Usage, and Future Directions. In Advances in Cyber Security, Nibras Ab-
dullah, Selvakumar Manickam, and Mohammed Anbar (Eds.). Vol. 1487. Springer
Singapore, Singapore, 213–229. https://doi.org/10.1007/978-981-16-8059-5_13
Series Title: Communications in Computer and Information Science.

[35] WatchGuard’s Threat Lab. 2023. Internet Security Report: Q1 2023. https:
//www.watchguard.com/wgrd-resource-center/security-report-q1-2023

[36] WatchGuard’s Threat Lab. 2024. Internet Security Report: Q4 2023. https:
//www.watchguard.com/wgrd-resource-center/security-report-q4-2023

[37] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Kor-
czyński, and Wouter Joosen. 2024. Tranco list with ID 662LX. https://tranco-
list.eu/list/662LX

[38] Ivan Letteri, Giuseppe Della Penna, Luca Di Vita, and Maria Teresa Grifa. 2020.
MTA-KDD’19: A Dataset for Malware Traffic Detection.. In Itasec. CEUR, Ancona,
153–165.

[39] Adi Lichy, Ofek Bader, Ran Dubin, Amit Dvir, and Chen Hajaj. 2023. When a RF
beats a CNN and GRU, together—A comparison of deep learning and classical ma-
chine learning approaches for encrypted malware traffic classification. Computers
& Security 124 (Jan. 2023), 103000. https://doi.org/10.1016/j.cose.2022.103000

[40] Chronicle Security Ireland Limited. 2023. VirusTotal. https://www.virustotal.
com/

[41] Xinjie Lin, Gang Xiong, Gaopeng Gou, Zhen Li, Junzheng Shi, and Jing Yu.
2022. ET-BERT: A Contextualized Datagram Representation with Pre-training
Transformers for Encrypted Traffic Classification. InWWW ’22: The ACM Web
Conference 2022, Virtual Event, Lyon, France, April 25 - 29, 2022, Frédérique Laforest,
Raphaël Troncy, Elena Simperl, Deepak Agarwal, Aristides Gionis, Ivan Herman,
and Lionel Médini (Eds.). ACM, Austin, Texas, 633–642. https://doi.org/10.1145/
3485447.3512217

[42] Chang Liu, Longtao He, Gang Xiong, Zigang Cao, and Zhen Li. 2019. Fs-net: A
flow sequence network for encrypted traffic classification. In IEEE INFOCOM
2019-IEEE Conference On Computer Communications. IEEE, 1171–1179.

[43] Mandiant. 2023. M-Trends reports. https://www.mandiant.com/m-trends
[44] Vasilios Mavroudis and Jamie Hayes. 2023. Adaptive Webpage Fingerprinting

from TLS Traces. arXiv:2010.10294 [cs.CR]
[45] David McGrew and Blake Anderson. 2016. Enhanced telemetry for encrypted

threat analytics. In 2016 IEEE 24th International Conference on Network Protocols
(ICNP). IEEE, Singapore, 1–6. https://doi.org/10.1109/ICNP.2016.7785325

[46] Mohammadreza MontazeriShatoori, Logan Davidson, Gurdip Kaur, and Arash
Habibi Lashkari. 2020. Detection of DoH Tunnels using Time-series Classification
of Encrypted Traffic. In 2020 IEEE Intl Conf on Dependable, Autonomic and Secure
Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud
and Big Data Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech). IEEE, online, 63–70. https://doi.org/10.
1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00026

[47] Carlos Novo. 2024. CarlosANovo/extending12to13: Code for "Extending C2
Traffic Detection Methodologies: From TLS 1.2 to TLS 1.3-enabled Malware".
https://github.com/CarlosANovo/extending12to13

https://sslbl.abuse.ch/
https://doi.org/10.1145/3447382
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967/
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967/
https://blogs.cisco.com/security/tls-fingerprinting-in-the-real-world
https://blogs.cisco.com/security/tls-fingerprinting-in-the-real-world
https://doi.org/10.1145/3292006.3300025
https://doi.org/10.1145/3292006.3300025
https://doi.org/10.1145/2996758.2996768
https://doi.org/10.1145/2996758.2996768
https://doi.org/10.1145/3097983.3098163
https://doi.org/10.1007/s11416-017-0306-6
https://doi.org/10.1109/CCNC49033.2022.9700625
https://doi.org/10.1109/CCNC49033.2022.9700625
https://doi.org/10.1023/A:1010933404324
https://github.com/cisco/joy
https://one.one.one.one/family/
https://one.one.one.one/family/
https://curl.se/
https://doi.org/10.1007/978-3-8348-9283-6_17
https://doi.org/10.1007/978-3-8348-9283-6_17
https://malware-traffic-analysis.net
https://malware-traffic-analysis.net
https://malpedia.caad.fkie.fraunhofer.de/details/win.meterpreter
https://malpedia.caad.fkie.fraunhofer.de/details/win.meterpreter
https://news.sophos.com/en-us/2021/04/21/nearly-half-of-malware-now-use-tls-to-conceal-communications/
https://news.sophos.com/en-us/2021/04/21/nearly-half-of-malware-now-use-tls-to-conceal-communications/
https://doi.org/10.1145/3102304.3102331
https://doi.org/10.1145/3102304.3102331
https://doi.org/10.17487/RFC8879
https://doi.org/10.1155/2023/3676692
https://doi.org/10.3390/electronics10243180
https://fingerprint.com/blog/what-is-tls-fingerprinting-transport-layer-security/
https://fingerprint.com/blog/what-is-tls-fingerprinting-transport-layer-security/
https://arxiv.org/abs/1907.12762
http://arxiv.org/abs/1907.12762
https://doi.org/10.1145/3411740.3411742
https://doi.org/10.1145/3411740.3411742
https://doi.org/10.1007/978-981-16-8059-5_13
https://www.watchguard.com/wgrd-resource-center/security-report-q1-2023
https://www.watchguard.com/wgrd-resource-center/security-report-q1-2023
https://www.watchguard.com/wgrd-resource-center/security-report-q4-2023
https://www.watchguard.com/wgrd-resource-center/security-report-q4-2023
https://tranco-list.eu/list/662LX
https://tranco-list.eu/list/662LX
https://doi.org/10.1016/j.cose.2022.103000
https://www.virustotal.com/
https://www.virustotal.com/
https://doi.org/10.1145/3485447.3512217
https://doi.org/10.1145/3485447.3512217
https://www.mandiant.com/m-trends
https://arxiv.org/abs/2010.10294
https://doi.org/10.1109/ICNP.2016.7785325
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00026
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00026
https://github.com/CarlosANovo/extending12to13


Extending C2 Traffic Detection Methodologies: From TLS 1.2 to TLS 1.3-enabled Malware RAID 2024, September 30-October 02, 2024, Padua, Italy

[48] Eva Papadogiannaki and Sotiris Ioannidis. 2021. A Survey on Encrypted Net-
work Traffic Analysis Applications, Techniques, and Countermeasures. Comput.
Surveys 54, 6 (July 2021), 1–35. https://doi.org/10.1145/3457904

[49] Christopher Patton. 2020. Good-bye ESNI, hello ECH! http://blog.cloudflare.
com/encrypted-client-hello/

[50] Paul Prasse, Gerrit Gruben, Lukas Machlika, Tomas Pevny, Michal Sofka, and
Tobias Scheffer. 2017. Malware Detection by HTTPS Traffic Analysis. (2017),
10 pages.

[51] Rapid7. 2023. cert_provider.rb – Metasploit framework (source code).
https://github.com/rapid7/metasploit-framework/blob/6.3.17/lib/msf/core/cert_
provider.rb#L41

[52] Rapid7. 2023. metasploit-payloads. https://github.com/rapid7/metasploit-
payloads/tree/master/python/meterpreter

[53] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446. https://doi.org/10.17487/RFC8446

[54] Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood. 2023. TLS
Encrypted Client Hello. Internet-Draft draft-ietf-tls-esni-16. Internet Engineering
Task Force. https://datatracker.ietf.org/doc/draft-ietf-tls-esni/16/ Work in
Progress.

[55] scikit-learn developers. 2024. sklearn.model_selection.StratifiedGroupKFold.
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
StratifiedGroupKFold.html

[56] Meng Shen, Mingwei Wei, Liehuang Zhu, and Mingzhong Wang. 2017. Classifi-
cation of Encrypted Traffic With Second-Order Markov Chains and Application
Attribute Bigrams. IEEE Transactions on Information Forensics and Security 12, 8
(Aug. 2017), 1830–1843. https://doi.org/10.1109/TIFS.2017.2692682 Conference
Name: IEEE Transactions on Information Forensics and Security.

[57] sitespeed.io. 2023. Browsertime. https://github.com/sitespeedio/browsertime
[58] Brian Trammell and Elisa Boschi. 2008. Bidirectional Flow Export Using IP Flow

Information Export (IPFIX). RFC 5103. https://doi.org/10.17487/RFC5103
[59] Johannes B. Ullrich. 2022. Encrypted Client Hello: Anybody Using it

Yet? https://isc.sans.edu/diary/Encrypted+Client+Hello%3A+Anybody+Using+
it+Yet%3F/28792

[60] Wei Wang, Mehul Motani, and Vikram Srinivasan. 2008. Dependent link padding
algorithms for low latency anonymity systems. In Proceedings of the 15th ACM
conference on Computer and communications security. 323–332.

[61] Konrad Wolsing, Eric Wagner, Antoine Saillard, and Martin Henze. 2022. IPAL:
breaking up silos of protocol-dependent and domain-specific industrial intrusion
detection systems. In Proceedings of the 25th International Symposium on Research
in Attacks, Intrusions and Defenses. 510–525.

[62] Diwen Xue, Michalis Kallitsis, Amir Houmansadr, and Roya Ensafi. [n. d.]. Finger-
printing Obfuscated Proxy Traffic with Encapsulated TLS Handshakes. ([n. d.]).

A ADDITIONAL UCNET DETAILS

Figure 5 shows the traffic observed throughout the entire month
(on the left) and on a specific day, March 12 (on the right) on the
university campus network where the UCNet dataset was captured.
One of the capture periods is highlighted on the right. The figure
presents the IPv4 traffic volume and the total traffic volume (also
including IPv6). Over the month, IPv4 traffic constituted 72.93%
compared to 27.07% for IPv6, with IPv4 throughput peaking at 1.3
times that of IPv6. This IPv4 predominance is largely due to the
prevalence of wireless traffic, which mainly uses IPv4 addresses.
The total traffic volume for this period was 868.82TB, with 633.60TB
being IPv4. On a single day, IPv4 traffic accounted for 68.81%, and
IPv6 for 31.19%. The total traffic volume for that day was 36.05TB,
with 24.81TB attributed to IPv4.

For wireless traffic, we gathered data on the number of active
clients and the generated traffic volume: Throughout the month,
the average number of connected clients was 1,111, with a peak of
5,273. The traffic volume for this period amounted to 1.25TB. On
the weekends, the average number of clients dropped to about 500.
On March 12, the average was 1,864 connected clients, with a peak
of 5,221 at 3:30 p.m. The highest concentration of connected clients
was observed between 2 p.m. and 5 p.m., aligning with our data
collection times.

B CERTIFICATE INFERENCE PROCEDURE

Figure 6 depicts the server certificate size inference procedure as
a diagram. In it, PHS (Presumable Handshake records’ Sizes) is a
list of record sizes (positive integers). These sizes correspond to
TLS records with an outer/opaque type of Application Data (type
23, as defined in [53], section 5.2) sent in the S2C direction, before
any C2S application data records are seen. One PHS sequence is
extracted from each TLS session.

The Len() function takes a list and returns its number of ele-
ments – Len(PHS) corresponds to the number of records fitting our
previous criteria. PHS[i] stands for the 𝑖𝑡ℎ element (starting from
0) of the PHS list. Sum() takes a list and returns the sum of its every
element, and Max() takes a list and returns the value of its largest
element. The ‘discard’ operations update the PHS list, removing
elements from it. A possible PHS could be [120,3000,200,53,10]
in which case Len(PHS)==5 and PHS[0]==120; discarding records
with size 53 and everything after results in PHS==[120,3000,200]
and a new Len(PHS)==3; then, Max(PHS)==3000 and the return
value for our inference process would be 2975.

C SEEMINGLY MALICIOUS SNIS

Unfortunately, IP addresses cannot be revealed, but permission has
been granted to reveal some of the seemingly malicious SNIs:

• www[.]657slky5koy37mdi4zsr[.]com

• www[.]qrhiw2rpj7llszas3adqr[.]com

• www[.]invclnriexetkhj2fhn[.]com

• www[.]ccm74fubv7o647avj27[.]com

• www[.]n4s7bgnu53yio6ecmhoy[.]com
• www[.]prrvbot4oqggr[.]com

These domains are public, and do not seem to have been registered,
further highlighting the suspicious behavior.

https://doi.org/10.1145/3457904
http://blog.cloudflare.com/encrypted-client-hello/
http://blog.cloudflare.com/encrypted-client-hello/
https://github.com/rapid7/metasploit-framework/blob/6.3.17/lib/msf/core/cert_provider.rb#L41
https://github.com/rapid7/metasploit-framework/blob/6.3.17/lib/msf/core/cert_provider.rb#L41
https://github.com/rapid7/metasploit-payloads/tree/master/python/meterpreter
https://github.com/rapid7/metasploit-payloads/tree/master/python/meterpreter
https://doi.org/10.17487/RFC8446
https://datatracker.ietf.org/doc/draft-ietf-tls-esni/16/
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedGroupKFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedGroupKFold.html
https://doi.org/10.1109/TIFS.2017.2692682
https://github.com/sitespeedio/browsertime
https://doi.org/10.17487/RFC5103
https://isc.sans.edu/diary/Encrypted+Client+Hello%3A+Anybody+Using+it+Yet%3F/28792
https://isc.sans.edu/diary/Encrypted+Client+Hello%3A+Anybody+Using+it+Yet%3F/28792


RAID 2024, September 30-October 02, 2024, Padua, Italy Diogo Barradas, Carlos Novo, Bernardo Portela, Sofia Romeiro, and Nuno Santos

04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 01
Day of month (March to April)

0

1

2

3

4
Tr

af
fic

 T
hr

ou
gh

pu
t (

Gb
ps

) Total IPv4 only

04 06 08 10 12 14 16 18 20 22
Hour of day (March 12th)

Figure 5: Graph of the monthly traffic throughput (left), and a zoom-in on a specific day (right). The zoomed-in area is

highlighted in gray on the left. Highlighted in purple on the right is the time during which a daily traffic capture took place.

Traffic capture and filtering
for valid TLS 1.3 sessions
(no resumptions, AppData
records in both directions)

Take the first AppData records in
the Server-to-Client direction,
before any Client-to-Server
AppData is seen ➜ PHS

01
more than 1

Len(PHS) ?

Return PHS[0] - 149
(Discount 17+132 from the

single PHS record size)
Yes No

PHS[0] > 300?

Return Sum(PHS) - 17*Len(PHS)-132
(discount 17 for each record, and 132 for

other Handshake messages)

Discard record with size 53 or
69 (Finished) and everything

coming after, if present

MHSM, single record
(not fragmented)

MHSM, multiple records
(fragmented)

individual HS messages
(one per record)

Yes
No

Len(PHS)>3?

certificate not fragmented

fragmented certificate 

Return Max(PHS)-17-8

Discard first (Encrypted Extensions)
and last (Certificate Verify) records

Return Sum(PHS)-17*Len(PHS)-8

Error, return -1

   PHS
MHSM

— presumable Handshake records (sizes)
— multiple Handshake messages 
     combined in a single one

Figure 6: Certificate size inference process illustrated as a diagram.


	Abstract
	1 Introduction
	2 Technical Overview
	2.1 Background on TLS 1.3
	2.2 Challenges in Classifying TLS 1.3
	2.3 The Need for Inference on TLS 1.3

	3 Methodology and Datasets
	3.1 Assumptions and Threat Model
	3.2 TLS Flows and Feature Extraction
	3.3 Dataset Synopsis
	3.4 Publicly-Available Datasets
	3.5 In-House Datasets
	3.6 Real-World Datasets

	4 TLS 1.2-based Traffic Classification
	4.1 Features: All TLS Records — C-Basic
	4.2 Feature: Certificate Chain Size — C-Cert
	4.3 Features: Application Data Only — C-Behav

	5 TLS 1.3 Traffic Analysis
	5.1 TLS 1.3 Record and Handshake Dissection
	5.2 Certificate Size Inference
	5.3 Application Behavior Extraction
	5.4 Results

	6 Real-world Traffic Capture Results
	7 Discussion
	7.1 Limitations

	8 Related Work
	9 Ethical Considerations
	10 Conclusion
	Acknowledgments
	References
	A Additional UCNet Details
	B Certificate Inference Procedure
	C Seemingly Malicious SNIs

