
An Empirical Study of DevSecOps Focused on Continuous Security Testing

Clarisse Feio
INOV / INESC-ID / IST

Lisbon, Portugal
c.feio@tecnico.ulisboa.pt

Nuno Santos
INESC-ID / IST
Lisbon, Portugal

nuno.m.santos@tecnico.ulisboa.pt

Nelson Escravana
INOV

Lisbon, Portugal
nelson.escravana@inov.pt

Bernardo Pacheco
INOV

Lisbon, Portugal
bernardo.pacheco@inov.pt

Abstract—DevSecOps is an emerging approach to integrate
robust security into the DevOps software development pro-
cess. It focuses on breaking the silos between development,
security, and operations and on introducing security from
the beginning of the software development process. In this
paper, we present a DevSecOps framework centered on the
principle of continuous security testing, applicable across
various software development scenarios. Our ultimate goal
is to promote wider adoption of DevSecOps practices. The
framework comprises a CI/CD pipeline, a series of activities
tailored for each phase, and tools to automate these activities.
Through a case study conducted in a real-world setting, we
evaluated the effectiveness of our framework. The results
indicate that the framework’s implementation was success-
ful, enabling the development team to identify numerous
vulnerabilities, including critical ones, proactively. Moreover,
the developers have shown a keen interest in employing this
framework in their future projects.

1. Introduction

Software development has evolved significantly over
the years, driven by an increasing demand for speed
and shorter time to market. This evolution has led to
the emergence of agile methodologies such as SCRUM,
Kanban, Extreme Programming (XP), and DevOps [10],
all aimed at reducing development time so products can
swiftly reach their final clients [10, 16]. DevOps, in
particular, stands out as the most recent among these
methodologies and has been widely adopted by numer-
ous organisations [9]. Its name, derived from the words
“Development” and “Operations”, highlights its focus on
fostering collaboration between these traditionally sepa-
rate silos.

Evolving from DevOps [13, 17], DevSecOps aims ad-
ditionally to prevent cyberattacks and mitigating their po-
tentially devastating consequences for organisations [14,
17]. It promotes collaboration not only between devel-
opment and operations teams, but also includes security
teams in the process [13, 15, 17]. Specifically, DevSecOps
aims to integrate security measures and automate security
practices from the project’s inception, adopting a “shift-
left” approach. This strategy ensures that security-related
activities are not postponed until the end of the Software
Development Lifecycle (SDLC) [7, 9, 17], thereby main-
taining the desired speed and agility [10, 13, 17].

Despite the growing popularity of DevSecOps, its
adoption is still not as widespread as that of its prede-
cessor, DevOps, which remains the preferred methodol-
ogy. Several factors contribute to this situation, with the
primary concern being the perception of security as a

bottleneck that slows down the speed and agility inherent
to DevOps processes [6, 13]. Often, developers do not
see security as part of their responsibilities, relegating it
to the domain of specialised security teams [17]. The dif-
ficulty in presenting security as a worthwhile investment
also poses a challenge. Security measures can be costly,
seen as providing no direct returns, and offer no absolute
guarantees of effectiveness.

Considering such existing concerns, this paper aims
to demystify the practical application of the DevSecOps
methodology in a real-world project, evaluating its tan-
gible benefits for both the software development team
and the organisation at large. To this end, we propose
to address four main research questions:

• RQ1. What are the phases of a typical DevSec-
Ops pipeline? Considering the variety of DevSecOps
methodologies proposed in the literature, each with
its own advantages and disadvantages, it is crucial to
identify an optimal DevSecOps pipeline; our goal is
to pinpoint one that incorporates the most beneficial
features to facilitate its adoption by organisations.

• RQ2. What continuous security testing activities
are performed in each phase? By identifying the key
activities within each phase of the pipeline, developers
can accurately understand the security-related tasks
expected of them throughout the development process.

• RQ3. Which tools are used for continuous security
testing? Many tools are available to assist developers
at various stages; therefore, identifying effective and
user-friendly tools can help maximise the benefits of
continuous security testing for different activities.

• RQ4. What is the impact of adopting DevSecOps
and continuous security testing in software devel-
opment? After addressing the preceding questions, it
is central to examine the practical implications of these
methodologies in a real-world development setting.

By analysing these questions, this paper makes several
contributions, each being covered in central sections of the
paper. First, in §3, we present a review of the existing
literature to explore various DevSecOps pipelines. The
objective is to identify commonalities among them and
understand their respective advantages and disadvantages,
thereby pinpointing an appropriate pipeline for our study
and addressing RQ1. Then, drawing from the existing
literature, we concentrate on RQ2 by pinpointing the typ-
ical activities conducted at each stage of the DevSecOps
pipeline (see §4). These activities are then scrutinised
to isolate those pertinent to continuous security testing,
which are subsequently compiled into a comprehensive

610

2024 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)

© 2024, Clarisse Feio. Under license to IEEE.
DOI 10.1109/EuroSPW61312.2024.00074



table. Thirdly, §5 addresses RQ3 by examining the types
of tools suitable for each security testing activity. We
defined three criteria for selecting tools: they must be
open source, regularly updated, and recommended by a
reputable cybersecurity entity. Based on these criteria, a
total of 15 tools were chosen. Lastly, §6 showcases the
application of the derived framework to a real case study,
thereby addressing RQ4. We applied the framework to
an existing project that was already adopting DevOps.
The pipeline underwent adaptation, incorporating new
activities and tools. This section details the outcomes
from utilising the security testing tools and captures the
developers’ perspectives on the modifications. Overall,
the integration of this framework yielded positive results,
though some limitations were identified and are discussed.

2. Related Work

Although DevSecOps is a relatively new methodol-
ogy, academic literature on the subject has expanded
significantly in recent years. Myrbakken and Colomo-
Palacios [13], Sánchez-Gordón and Colomo-Palacios [15],
Mao et al. [10], Desai and Nisha [4], Akbar et al. [1],
and Leppänen et al. [9] all performed literature reviews
to understand the benefits and challenges of adopting
DevSecOps. In general, it was found that the main benefits
include shifting security to the left and automating secu-
rity. There were many challenges identified, mainly related
to creating a security culture, the lack of appropriate tools,
the lack of security specialists, and many others.

Mohan et al. [11], Tomas et al. [17], and Angermeir
et al. [2] studied the state of DevSecOps in the software
development industry. This was done mainly through in-
terviews with practitioners, which revealed similar results
to the literature reviews just mentioned. Namely, the im-
plementation of security activities is still rare given the
lack of knowledge of developers, lack of tools and stan-
dards, and not perceiving security as their responsibility.
Implementing a security culture is a major hurdle, but
introducing security champions into the team is beneficial.

From the implementation angle, Lam and Chaillan [7],
Larrucea et al. [8], Kumar and Goyal [6], Moyón et
al. [12], Rangnau et al. [14], and Brasoveanu et al. [3]
deployed DevSecOps in a real context, some also creating
their own framework [6, 7, 12]. All of these authors found
that practitioners were satisfied with the results and often
surprised by the amount of automation possible [12].

In this work, we aim to complement this body of re-
search by ultimately recommending a DevSecOps frame-
work that is both generalisable and applicable across vari-
ous sectors of the software development industry, thereby
facilitating the broader adoption of this methodology. Our
investigation predominantly centers on the technical facets
of DevSecOps, with a specific emphasis on: the CI/CD
pipeline, the principle of continuous security testing, the
spectrum of activities integrated throughout the pipeline,
and the deployment of tools to streamline automation.
Continuous security testing, notable for its capacity for
easy automation without impeding speed and agility, can
identify a broad range of security flaws and automatically
categorise these defects according to their severity. Hence,
applying this singular principle to a DevOps project can
instantly deliver value to the team, introducing minimal

(a) Lam and Chaillan [7]

(b) Larrucea et al. [8]

(c) Mao et al. [10]

(d) Moyón et al. [12]

(e) Kumar and Goyal [6]

(f) Brasoveanu et al. [3]

Figure 1. Common elements among the analysed pipelines.

disruption or alterations to their existing workflow and
productivity levels. It achieves this by providing swift
feedback on the software’s security posture, thereby facil-
itating the early detection of security vulnerabilities and
streamlining task prioritisation.

3. RQ1: DevSecOps Pipeline Selection

The core component of DevSecOps is the CI/CD
pipeline, which is composed of a set of consecutive
phases that define various activities and tools to aid the
automation of software development. This pipeline can
have many variations, depending on the level of detail and
intended use. In this section, we assemble a DevSecOps
pipeline that can be directly applied to the majority of
software development contexts with minimal to no ad-
justments, therefore making its adoption easier. For this
reason, it should meet the following criteria:

• the pipeline should be applicable and easily adaptable
to various industry sectors willing to use DevSecOps;

• the pipeline should not be simple to the point of
omitting crucial information, but it should also not be
too complicated, as it might cause organisations to feel
reluctant to adopt it;

• the pipeline should not be technology specific.

By studying the different proposals for DevSecOps
pipelines found in the literature, it is possible to pinpoint
common aspects among them, which help identifying
which phases should be present in a general pipeline. Six
pipelines were studied and compared, as presented below.

3.1. Common Elements of Reviewed Pipelines

All the pipelines were set side-by-side so that it would
be easier to visually identify common elements. Phases
with the same (or similar) content were painted with the
same colour, while those without common elements were
left blank. This result can be seen in Figure 1.

All pipelines have elements in common with others,
but some have all their phases covered by this commonal-
ity, while others have phases that were not present in any

611



other pipeline. This may be due to either using a different
nomenclature or due to a different vision/approach. Most
commonly, blank phases are already part of other, more
general, phases and do not need to be explicitly present
in the pipeline. Overall, the phases that are common to
all, or the majority, of pipelines are: Plan, Code/Develop,
Build, Test, Release, Deploy, Operate, and Monitor.

3.2. Pipeline Advantages and Disadvantages

After analysing each pipeline and comparing it with
others, it is possible to identify the benefits and drawbacks
of each of them. A summary table with all the advantages
and disadvantages of the pipelines is presented in Table 1.

The pipeline by Lam and Chaillan [7] stands out sig-
nificantly from others, primarily due to its endorsement by
the US Department of Defense, encouraging practitioners
to adopt it as a model for their organisations. This pipeline
has a good amount of detail, without being overbearing.

The pipeline proposed by Larrucea et al. [8] is specif-
ically designed around the environments encountered in
their project, rendering it highly customised for that partic-
ular application and potentially less relevant for different
contexts. This results in a simplified pipeline that omits
critical phases such as Plan, Test, and Operate. Addition-
ally, it diverges from conventional pipeline nomenclature
and deviates from the reference design.

Mao et al.’s pipeline [10] has a fair level of detail and
bears resemblance to the reference design. It highlights
relevant phases but omits others (e.g. Release and Deploy),
resulting in a simpler pipeline that might mislead profes-
sionals with limited software development experience.

The pipeline utilised by Moyón et al. [12] is detailed
and is very similar to the reference design, only lacking
the Deliver phase. However, this absence does not omit
important activities, since the activities conducted in this
phase can be done in the Release phase.

Kumar and Goyal’s pipeline [6] is the most detailed
with a total of 12 phases. On the one hand, the pipeline
is very complete, but on the other hand, it is too com-
plex, especially for people unfamiliar with it, which can
make them apprehensive. Also, this pipeline is specifically
tailored for a project and therefore not always easily
applicable to other situations.

Finally, the pipeline from Brasoveanu et al. [3] is a bit
different from the usual pipeline. This is due to it being
a maturity assessment framework and not necessarily a
software development pipeline (but the authors tried to
create it so that it could be easily mapped into a pipeline).
This results in less detail than desired, and also in a
different nomenclature from what is usually utilised.

3.3. Proposed DevSecOps Pipeline

Following the analysis and comparison of the six
pipelines, we can see that the common elements between
the majority of them are Plan, Code/Develop, Build,
Test, Release, Deploy, Operate and Monitor, and that the
pipelines with more benefits are those from Lam and
Chaillan [7] (DoD Reference design) and Mao et al. [10].

Therefore, the final pipeline built for this frame-
work is composed of those eight common phases: Plan,
Code, Build, Test, Release, Deploy, Operate, and Monitor,

TABLE 1. SUMMARY OF PIPELINES’ BENEFITS AND DRAWBACKS.

Pipeline Benefits Drawbacks

Lam and Chaillan [7] Good level of detail
Reference design

Larrucea et al. [8]
Too simple, lacks detail
Application specific
Different nomenclature

Mao et al. [10] Similar to reference design Lacks important phases

Moyón et al. [12] Good level of detail
Similar to reference design

Kumar and Goyal [6] Very complete Too complex
Application specific

Brasoveanu et al. [3] Lacks important phases
Different nomenclature

as presented in Figure 1(d), which corresponds to the
pipeline presented by Moyón et al. [12], and is also very
similar to the pipeline developed by Lam and Chaillan [7].
It strikes a good balance between simplicity and complex-
ity, being explicit enough to not hide any important details
but simple enough to not seem too difficult and daunting.
This kind of pipeline is often also used in plain DevOps,
which makes the adaptation of DevOps to DevSecOps
much simpler and easier because fewer changes have to
be made to the way a team operates.

4. RQ2: DevSecOps Pipeline Activities

With the pipeline defined, the next step involves spec-
ifying the activities to be performed at each phase, guided
by established DevOps practices such as continuous mon-
itoring, continuous integration, and continuous delivery.
In DevSecOps, a new practice arises, continuous secu-
rity, which involves taking security into account in every
phase of the pipeline. In particular, continuous security
testing involves the security testing of software and its
constituents along the whole pipeline. This section fur-
ther elaborates on the pipeline by detailing the activities
conducted in each phase, and identifying the three require-
ments for these activities as outlined in the following list:

• the activities should be related to security testing;

• continuous security testing implies that security testing
is performed continuously along the entire SDLC,
therefore, every phase of the defined pipeline should
have at least one activity related to security testing;

• security testing activities should include various do-
mains, such as source code testing, network testing,
infrastructure testing, and many others.

To identify the security testing activities, we must first
identify the typical general activities performed along the
whole pipeline. To this end, we analyse the literature and
identify common themes among the activities proposed by
each author. Then, we further investigate them to pinpoint
which of them correspond to “continuous security testing”
activities and follow the requisites defined previously.

4.1. Identifying Testing Activities

A summary of all activities found in the literature
can be found in Table 2. These activities represent the
standard practices typically employed in the adoption of
DevSecOps and can be customised to meet the specific
requirements of an organisation. Customisation may in-
volve modifying the set of activities by either excluding

612



TABLE 2. DEVSECOPS ACTIVITIES. TESTING ACTIVITIES ARE IDENTIFIED IN BOLD.

Plan Code Build Test Release Deploy Operate Monitor

• Project mng.
planning

• Define secure dev.
guidelines

• Compile and
package

• Integration
testing

• Acceptance
testing

• Infrastructure
provisioning

• Update and
patch

• Performance
monitoring

• Software
requirement
analysis

• Enforce secure
development
guidelines

• Build automation • Fuzz
testing

• Performance
testing

• Documentation
review

• Infrastructure
orchestration

• Threat
intelligence

• Security
requirement
analysis

• Code development • Unit testing • DAST • Quality
assurance

• Vulnerability
scanning

• Load
balancing

• Logging and
log analysis

• System
design

• Secure guidelines
verification

• Smoke
testing • IAST • Documentation

review
• Penetration
testing

• Secrets
management

• Vulnerability
scanning

• Threat
modelling • Code review

• Software
composition
analysis

• Vulnerability
scanning

• Vulnerability
scanning

• Security
incident
management

• Intrusion
detection

• Risk
assessment

• Static code
analysis • SAST • Penetration

testing
• Red & Blue
teams

• Configuration
management • Bug bounty

• Test planning

TABLE 3. CONTINUOUS SECURITY TESTING ACTIVITIES IN EACH PHASE.

Plan Code Build Test Release Deploy Operate Monitor

• Test
planning

• Test
development

• Software composition
analysis • DAST • Vulnerability

scanning
• Vulnerability
scanning

• Red & blue
teams

• Vulnerability
scanning

• SAST • SAST • IAST • Penetration testing • Penetration testing
• Vulnerability scanning

certain tasks or incorporating new ones to align with the
organisation’s unique needs. Overall, we identified a total
of 16 testing activities highlighted in bold in Table 2.

Our process to identify all testing activities began
by selecting those that have the word “test” or “testing”
in their name. Eleven activities meet this condition: test
planning, unit testing, smoke testing, SAST, integration
testing, fuzz testing, DAST, IAST, acceptance testing,
performance testing, and penetration testing.

Moreover, several activities, despite not explicitly
bearing the terms “test” or “testing”, are inherently linked
to the testing process. Specifically, code development cov-
ers not only the creation of the software itself but also in-
volves configuration and test development. Consequently,
the sub-activity of test development is pertinent in this
context. Similarly, static code analysis, which may include
a range of source code examination techniques such as
SAST, qualifies as a testing activity. Software composition
analysis is another crucial activity, aimed at determining
whether third-party libraries are vulnerable and assessing
their security for use. Additionally, vulnerability scanning,
which is effectively a form of vulnerability testing, entails
assessing the software and its components for known vul-
nerabilities using specially designed inputs. The practices
of red & blue teams also align closely with testing: red
teams actively seek to compromise the system’s security,
whereas blue teams evaluate whether the existing defence
mechanisms, strategies, and procedures are sufficient.

4.2. Identifying Security Testing Activities

Next, we filter the identified testing activities and
pinpoint those related to security. In total, nine different
security testing activities were identified (see Table 3).

Following a similar approach as previously described,
we initially identify activities explicitly containing the
word “security” in their names. These include SAST,
IAST, and DAST, where the suffix ’ST’ denotes “Security

Testing”. Vulnerability scanning also clearly falls into
this category, as it directly involves the identification and
mitigation of security vulnerabilities. Penetration testing,
along with red & blue team exercises, is similarly un-
ambiguous. These practices not only align closely with
vulnerability scanning by delving deeper into discovering
the origins of vulnerabilities but also extend to evaluating
the effectiveness of existing defence mechanisms.

Other activities may not be as immediately appar-
ent in their connection to security. Software composition
analysis, for example, is a critical security activity. It
assesses whether components from third-party or open-
source projects contain vulnerabilities that could compro-
mise the system. Test planning, which involves defining
strategies and plans for all testing activities, inherently
includes planning for security tests. Similarly, test de-
velopment, which involves creating various tests, encom-
passes the development of security tests as well. By virtue
of including security tests, test development is also an
essential component of security testing activities.

4.3. Proposed DevSecOps Activities

Our finalised proposal for continuous security testing
activities throughout the pipeline is detailed in Table 3.
This proposal meets all the defined prerequisites: (i) all
activities are related to security testing; (ii) all pipeline
phases have at least one security testing activity, as needed
for continuous security testing; and (iii) all these activities
test various domains. For example, SAST focuses on
the source code, while DAST tests the behaviour of the
running application when confronted with invalid inputs.
Red & blue teams is the most in-depth activity.

5. RQ3: DevSecOps Security Testing Tools

Automation plays a central role in attaining the agility
and speed essential for DevSecOps. This section is ded-

613



icated to identifying tools that can automate, whether
partially or fully, the set of continuous security testing
activities outlined in the preceding section. To ensure
broader adoption, the DevSecOps framework needs to be
user-friendly and accessible, without imposing significant
delays or financial burdens on the organisation. Hence,
selected tools must satisfy the following specific criteria
aimed at minimising delays and costs:

• ideally, Open-Source Software (OSS) should be pre-
ferred to prevent vendor lock-in and ensure greater
transparency and customisation. OSS is cost-effective,
as open-source tools are often free for use, even com-
mercially, depending on their license;

• the tools must be up-to-date to address the latest secu-
rity threats effectively. They should not be deprecated,
and their most recent update should have occurred
within the past year;

• it is desirable for tools to be recommended or de-
veloped by internationally recognised cybersecurity
entities, such as the OWASP Foundation, CISA (Cy-
bersecurity & Infrastructure Security Agency), and
NIST. This endorsement is typically an indication that
the tool meets high-quality standards and adheres to
the best practices established by these entities.

Beyond these criteria, organisations may consider ad-
ditional factors tailored to their specific use cases. The
usability of the tool is crucial, as it enhances the efficiency
of experts’ work. Ease of installation and configuration is
also vital. Furthermore, compatibility with existing tools
(e.g., Jenkins) is significant, as it facilitates automation.
Most importantly, the selected tools must support all the
programming languages utilised by the organisation.

5.1. Proposed DevSecOp Toolset

By reviewing the available literature, we identified
over 50 tools for all activities and filtered them based on
the tool criteria defined. In the end, we selected 15 tools
from the initial 54. These can be seen in Table 4.

Notice that not all activities are represented in Table 4,
namely test planning, test development, and IAST, which
have no associated tools that meet our prerequisites. There
are various reasons for this. In the case of test planning,
this activity is very manual, where tools are only auxiliary
but not obligatory. For this reason, only one tool was found
in the chosen literature (Jira Software), which was not
open-source and so was excluded from the final list.

Test development is a broad activity that encompasses
multiple kinds of testing beyond security testing. The tools
utilised in this activity can be used for different types
of testing. Since they are not specific to cybersecurity,
they were not mentioned by any of the cybersecurity
organisations considered (OWASP, NIST, and CISA), and
therefore were excluded from the final list.

IAST has different reasons; it is focused on security
and dependent on tools, however, there is a lack of tools
overall, and the ones that exist are mainly commercial.

6. RQ4: DevSecOps Case Study
While our DevSecOps framework is now fully out-

lined, assessing its effectiveness in a real-world scenario

TABLE 4. FINAL SELECTION OF CONTINUOUS SECURITY TESTING
TOOLS BASED ON THE PRE-DEFINED CRITERIA.

Tool name Activity OSS Updated Entities

SpotBugs SAST Yes Yes OWASP;
NIST

Clair SAST Yes Yes OWASP

SonarQube SAST
Yes (also has a
commercial
version)

Yes OWASP;
NIST

PMD SAST Yes Yes OWASP;
NIST

Dependency-Check SCA Yes Yes OWASP
bundler-audit SCA Yes Yes OWASP

Zed Attack Proxy

DAST;
Vulnerability scanning;
Penetration testing;
Red & Blue teams

Yes Yes OWASP;
CISA

Wapiti

DAST;
Vulnerability scanning;
Penetration testing;
Red & Blue teams

Yes Yes OWASP

Nmap
Vulnerability scanning;
Penetration testing;
Red & Blue teams

Yes Yes CISA

OpenVAS
Vulnerability scanning;
Penetration testing;
Red & Blue teams

Yes Yes OWASP;
CISA

sqlmap Penetration testing;
Red & Blue teams Yes Yes OWASP;

CISA

Metasploit Penetration testing;
Red & Blue teams

Yes (also has a
commercial
version)

Yes OWASP;
CISA

THC Hydra Penetration testing;
Red & Blue teams Yes Yes OWASP

Snort Red & Blue teams Yes (commercial
features) Yes NIST;

CISA
Suricata Red & Blue teams Yes Yes CISA

is crucial to understand its impact on the development
process and quality of the software, particularly in terms
of security. In this section, we apply our framework to a
case study to assess its advantages and limitations.

6.1. Background on the GRACE Project at INOV

The GRACE project will be the focus of this case
study. The DevSecOps framework developed in this study
will be applied to its software development process, which
enhances the DevOps methodology with principles of
security-by-design and privacy-by-design.

INOV [5] is one of the 22 partners contributing to this
project and has a team of three developers working on it.
At INOV, the GRACE project is the responsibility of the
cybersecurity research team. Because of this, the security
and privacy principles previously described are familiar to
the development team and considered by default. By also
following DevOps methodology, the resulting software
development process is closely aligned with DevSecOps,
although not entirely identical. Specifically, the original
DevOps pipeline consists of four distinct phases: Plan,
Code, Build, and Release. The development architecture is
based on microservices, enhancing flexibility and scalabil-
ity. Each component is built using Jenkins, facilitating the
automation of the building process, and then containerised
using Docker, simplifying the packaging and delivery.

6.2. Applying Continuous Security Testing

Our DevSecOps framework includes three main con-
stituents: a pipeline, a set of activities performed in each
phase, and proposed tools to improve the performance and
automation of these activities. Next, we compare these
three components against GRACE’s DevOps methodology
to assess what changes and adaptations need to be made
to apply the principle of continuous security testing.

614



6.2.1. Pipeline. The DevOps pipeline utilised in GRACE
appears somewhat incomplete compared to the pipeline
proposed in our study. Specifically, while our selected De-
vSecOps pipeline includes eight distinct phases (see Fig-
ure 1(d)), GRACE is structured around only four phases,
lacking the Test phase and all three subsequent phases
after Release, namely Deploy, Operate, and Monitor.

The DevOps pipeline for GRACE lacks a dedicated
Test phase, primarily due to the project’s testing activ-
ities being limited in scope. Currently, the project fo-
cuses solely on functional testing to verify if the appli-
cation behaves as expected. However, a comprehensive
testing approach, particularly including security testing,
would be beneficial. The absence of Deploy, Operate,
and Monitor phases is attributed to a different rationale.
Being a research and innovation project, GRACE lacks
a production environment, rendering the Deploy phase
unfeasible. While the staging environment attempts to
closely replicate a hypothetical production environment,
its access is limited due to the collaborative nature of
the project involving over 20 entities. Hence, integrating
new or experimental security testing activities within this
environment is not practicable.

Consequently, to transition GRACE’s DevOps pipeline
towards our proposed DevSecOps model, we integrated
a new Test phase along with security testing activities
into the SDLC at INOV. However, due to the previously
mentioned constraints, the Deploy, Operate, and Mon-
itor phases could not be implemented. This limitation
unfortunately restricts our capacity to fully validate the
effectiveness of the proposed DevSecOps framework.

6.2.2. Activities. To ensure the seamless integration of
security testing activities into GRACE’s SDLC, without
causing delays or disrupting the workflow of develop-
ers, we aligned with the activities proposed in Table 3.
Upon reviewing GRACE’s pipeline, the following activi-
ties were considered suitable: test planning, test develop-
ment, SAST, SCA, DAST, IAST, vulnerability scanning,
and penetration testing. The red and blue teams activity
was excluded due to the absence of an Operate phase
in the project pipeline. Following the analysis presented
subsequently, we established a finalised setup for contin-
uous security testing activities in GRACE, as detailed in
Table 5.

Beginning with the Plan phase, the only activity pro-
posed for this phase is test planning. Since this activity
is already being conducted in the project, there was no
need to incorporate it into the SDLC anew. During the
Code phase, the recommended activities include test de-
velopment and SAST. Test development is another task
already undertaken by the developers. In contrast, SAST
represents a new addition, typically integrated through
IDE plugins to assist developers in creating more secure
code. The Build phase recommends two activities: SCA
and SAST. Both are readily automatable using tools and
can be seamlessly integrated into the development process.

In the newly added Test phase, three security testing
activities were introduced: DAST, IAST, and vulnerabil-
ity scanning. Both DAST and IAST are designed to be
configured for fully automated execution. Vulnerability
scanning, inherently automatic, has been incorporated into
the SDLC. Accordingly, DAST has been adopted due to its

TABLE 5. ACTIVITIES PERFORMED IN GRACE: NEW ACTIVITIES IN
BOLD, ACTIVITIES NOT PERFORMED IN STRIKETHROUGH.

Plan Code Build Test Release

Test planning Test development SCA DAST Vuln. scanning
SAST SAST IAST Pen. testing

Vuln. scanning

automation capabilities. While IAST also offers potential
for full automation, the absence of an updated open-source
tool led to its exclusion from the GRACE project.

In the concluding phase of this pipeline, the Release
phase, the security testing activities include vulnerabil-
ity scanning and penetration testing. As previously men-
tioned, vulnerability scanning is designed for full au-
tomation, facilitating its straightforward implementation in
this project. In contrast, penetration testing is inherently
manual, relying on tools only to automate certain tasks.
It requires specialised expertise that neither the developer
team nor the author currently possess. As a result, penetra-
tion testing was not implemented in the GRACE project.

6.2.3. Tools. To determine the appropriate security tools
for each activity, we initially referred to Table 4 as
a foundation. Subsequently, a comprehensive discussion
with the development team was conducted to precisely
understand their specific needs. Given that GRACE is an
active project, it was crucial to consider the programming
languages and other tools already in use by the team. Pre-
dominantly, the project utilises Java and Python. Jenkins
automates the build process and the creation of Docker
containers, making the integration capabilities with Jenk-
ins a priority. As for IDEs, Eclipse IDE, VS Code, and
Sublime Text are the preferred ones.

Taking into account these factors, we selected the
following tools: SonarQube Community Edition and
SonarLint for SAST, Dependency-Check for SCA, and
ZAP for both DAST and vulnerability scanning. With the
exception of SonarLint, all these tools were integrated
with Jenkins, enabling them to automatically run with
each new build without requiring manual intervention.
Next, we elaborate on the rationale behind this choice.

SAST is present in both the Code and Build phases.
The SAST tools identified in Table 4 include SpotBugs,
Clair, SonarQube, and PMD. Among these, SpotBugs
functions solely as an IDE plugin, specific to the Eclipse
IDE, and supports only Java. SonarQube stands out for
its support of multiple languages and its capability to
integrate with various platforms, including GitHub, Bit-
bucket, GitLab, and Jenkins. Therefore, we selected it
for the Build phase. In the Code phase, while an IDE
plugin solution is preferred, SpotBugs’ limitations led us
to consider SonarLint as a more suitable alternative. Its
direct integration with SonarQube, support for a broad
spectrum of languages, and availability for both Eclipse
IDE and VS Code made SonarLint the optimal choice.

For SCA, we chose Dependency-Check. It supports
several languages and file types. Its integration with Jenk-
ins and SonarQube ensures compatibility with GRACE.

Next we have DAST activity, also with two potential
tools: OWASP Zed Attack Proxy and Wapiti. Both of
these tools are web scanners. OWASP ZAP has multiple
ways of being used. It has a user-friendly GUI to be used

615



Figure 2. SonarQube overview results for the GRACE project.

manually or partially manually, but it also provides users
with docker containers with predefined packages scans
that are fully automatic. Wapiti also provides automatic
scans through the use of the Command Line Interface
(CLI). Although both scanners are suitable for DAST and
can be used together with Jenkins, OWASP ZAP ended
up being preferred due to its multiple modes of operation.

Lastly, for vulnerability scanning, given that OWASP
ZAP is a web scanner that was also selected for the DAST
activity, we also selected it for vulnerability scanning.

6.3. Results

The DevSecOps framework was then applied to the
GRACE project, which follows a microservices architec-
ture and it is composed of 23 different sub-projects. Each
tool generated reports with the vulnerabilities found and
their severity that will be analysed hereafter.

6.3.1. SonarQube results. SonarQube is a static code
analyser that identifies a wide array of issues beyond
security vulnerabilities, including code quality concerns,
bugs, and code smells. The statistics produced for GRACE
are summarised in Figure 2. This report assigns grades
from A to E, with A being the best, across three key
areas: code reliability (influenced by the number of bugs
detected), security (based on the number of vulnerabilities
found), and maintainability (which considers the effort
required to address all code smells relative to the project’s
size). The presented data was collected by scanning each
project on 18th August 2023.

The reliability of the sub-projects varies greatly, with
some of them obtaining the highest grade (A),indicating
minimal bugs, and others obtaining the lowest grade (E)
because they have a lot of bugs or very serious bugs.
Overall, the average Reliability is in the middle range
(C). Security has the highest grade (A) for most projects,
with the exception of workshop-support-page with a D
grade. Regarding maintainability, all sub-projects achieved
the maximum grade of A. Lastly, code duplication varies
between projects, but most are below 10%.

SonarQube facilitates an Issue tab which shows all the
issues detected according to three types, which are Bug,
Vulnerability, and Code smell; and five levels of severity.

SonarQube crates an additional table which is related to
the Security Hotspots tab. Security Hotspots are pieces of
code that need to be assessed in regards to security, as they
might present a threat to the system. SonarQube classifies
these security Hotspots based on review priority (High,
Medium or Low) and attributed to a type. In GRACE, the
majority of the sub-projects have 0 High priority security
hotspots, the exceptions are filepep, import-export-service
and scanning sub-projects which all have one high pri-
ority CSRF security hotspot. With Medium priority, the
most common type is Permission (e.g. running images
as root), and most sub-projects only have one Medium
security hotspot. The Low priority cases present the most
variability, both in number per project and in type. In
general, the sub-projects with the most security hotspots
are handling-metadata, synthetic-referrals, and cleansing-
reduction which should be given more attention.

6.3.2. SonarLint results. SonarLint is tied to SonarQube,
and the issues pointed out by both tools coincide. For
this reason, we instead make an account of the develop-
ment team’s feedback regarding SonarLint’s usefulness. A
survey consisting of ten questions was sent to the three
developers on the team after using the tool for one month.

The developers all had a positive experience with this
tool and expressed their wish to continue using it for future
projects. The installation and configuration of the tool was
easy, although two developers reported some difficulties in
installing and configuring it on the Eclipse IDE. Overall,
they found SonarLint to be easy to use, useful, and very
little intrusive. One developer had never used similar IDE
plugins before and stated that SonarLint had a positive
impact on their performance. The other two developers
had already used other linting/SAST plugins before and
felt that the impact of SonarLint on performance was
neutral, but still pointed out that they found SonarLint
more advantageous than the plugins they had used before.

6.3.3. OWASP Dependency-Check results. This SCA
tool examines project dependencies to assess their se-
curity. It checks each dependency against vulnerability
databases such as NVD, CISA Known Exploited Vulner-
abilities Catalogue, Sonatype OSS Index, etc., and lists
all the vulnerabilities found along with their severity level
(Low, Medium, High, Critical). This tool was integrated
with Jenkins and configured for all 23 sub-projects.

Figure 3, reveals a large number of detected vulner-
abilities. The semantic-mapping sub-project stands out
with a total of 322 vulnerabilities, followed closely by
preprocessing-orchestration with 303 vulnerabilities. The
semantic-mapping sub-project warrants particular atten-
tion due to harbouring the highest count of Critical vul-
nerabilities: 47 in total. A contributing factor to the large
number of vulnerabilities (1795 across all projects) is the
lack of updates to many dependencies since the begin-
ning of the project over three years ago. Resolving these
vulnerabilities varies in complexity; while many can be
addressed by simply updating to the latest version of the
affected library, others demand more substantial efforts.

6.3.4. OWASP Zed Attack Proxy results. OWASP ZAP
is a web scanner used for DAST and vulnerability scan-
ning. Therefore, this tool specialises in web applications

616



Figure 3. OWASP Dependency-Check results for GRACE project.

Figure 4. OWASP Zed Attack Proxy results for GRACE project.

and APIs. Out of the 23 sub-projects that are part of the
GRACE project, only 3 fit those categories, one of them is
a regular web page, so the ZAP Baseline scan was used,
and the other two are APIs, so the API scan was performed
instead. The results can be seen in Table 4. ZAP generates
a scan report listing the alerts found and categorises them
into 4 risk levels, High, Medium, Low, or Informational.
No High risk alerts were found, and the only Medium risk
alerts (6) found belonged to the sub-project workshop-
support-page. This sub-project had a total of 17 alerts,
the most of the three projects, so it should be prioritised.

6.3.5. Critique. Although efforts were made to produce
results as accurate as possible, there are some limitations
that have a direct impact on the results. As mentioned
previously, due to the research nature of the GRACE
project, no production environment was present. In ad-
dition to that, the staging environment had strict access
restrictions which made it impossible to apply the Deploy
phase, Operate phase, and Monitor phase.

Similarly, not all proposed activities were performed.
The activities from the absent phases were not executed,
but even those related to the carried out phases were not
fully performed either. Both IAST and Penetration testing
are activities that were not fulfilled due to lack of tools
and lack of expertise. Since it was not possible to fully
apply the proposed DevSecOps framework, it was also not
possible to fully assess the framework’s validity.

Finally, another factor that heavily affects the results
is the tools’ limitations. Tools are not capable of detecting
all defects (false negatives) and often report issues that are
actually not a problem (false positives) [17]. The results
presented in this study were not thoroughly analysed to

remove false positives due to the lack of expertise of the
author and the high volume of defects detected by the
tools. For this reason, the amount of issues and defects
detected by the tools is likely to be inflated and does not
represent the real security status of the GRACE project.

7. Conclusions

In this paper, we focused on identifying a practical
DevSecOps framework and in assessing it in a real-world
environment. A CI/CD pipeline was defined based on
existing literature, along with a list of activities to be
performed in each phase. A list of tools was also created
so that the activities described could be automated as
much as possible. This framework was then applied to
a case study. Although it was not possible to fully apply
the DevSecOps framework due to the project’s nature, our
experiment was still a success. The developers found the
tools useful and are willing to use them in future projects.
Future work involves studying new metrics regarding the
adoption and effectiveness of this framework, such as the
perceived acceptance by the developers.
Acknowledgements: We thank the anonymous reviewers
for their comments and insightful feedback. This work was
supported by the Fundação para a Ciência e Tecnologia
(FCT) under grant UIDB/50021/2020, by IAPMEI under
grant C6632206063-00466847 (SmartRetail), and by the
European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 883341 (GRACE).

References
[1] M. A. Akbar, K. Smolander, S. Mahmood, and A. Alsanad, “Toward success-

ful DevSecOps in software development organizations: A decision-making
framework,” Information and Software Technology, 2022.

[2] F. Angermeir, M. Voggenreiter, F. Moyon, and D. Mendez, “Enterprise-
Driven Open Source Software: A Case Study on Security Automation,” in
ICSE-SEIP, 2021.

[3] R. Brasoveanu, Y. Karabulut, and I. Pashchenko, “Security Maturity Self-
Assessment Framework for Software Development Lifecycle,” in Proc. of
ARES, 2022.

[4] R. Desai and T. N. Nisha, “Best Practices for Ensuring Security in DevOps:
A Case Study Approach,” Journal of Physics: Conference Series, 2021.

[5] INOV, https://www.inov.pt/en/index.html, [n. d.], accessed: 2024-05-13.
[6] R. Kumar and R. Goyal, “Modeling continuous security: A conceptual model

for automated DevSecOps using open-source software over cloud (ADOC),”
Computers & Security, 2020.

[7] T. Lam and N. Chaillan, DoD Enterprise DevSecOps Reference Design:
Version 1.0, 2019.

[8] X. Larrucea, A. Berreteaga, and I. Santamaria, “Dealing with Security in a
Real DevOps Environment,” in Communications in Computer and Informa-
tion Science, 2019.

[9] T. Leppänen, A. Honkaranta, and A. Costin, “Trends for the DevOps Security.
A Systematic Literature Review,” in Business Modeling and Software Design,
2022.

[10] R. Mao, H. Zhang, Q. Dai, H. Huang, G. Rong, H. Shen, L. Chen, and
K. Lu, “Preliminary Findings about DevSecOps from Grey Literature,” in
QRS, 2020.

[11] V. Mohan, L. ben Othmane, and A. Kres, “BP: Security Concerns and Best
Practices for Automation of Software Deployment Processes: An Industrial
Case Study,” in SecDev, 2018.

[12] F. Moyón, R. Soares, M. Pinto-Albuquerque, D. Mendez, and K. Beckers,
“Integration of Security Standards in DevOps Pipelines: An Industry Case
Study,” in Proc. of PROFES, 2020.

[13] H. Myrbakken and R. Colomo-Palacios, “DevSecOps: A Multivocal Litera-
ture Review,” in Software Process Improvement and Capability Determina-
tion, 2017.

[14] T. Rangnau, R. V. Buijtenen, F. Fransen, and F. Turkmen, “Continuous
Security Testing: A Case Study on Integrating Dynamic Security Testing
Tools in CI/CD Pipelines,” in EDOC, 2020.

[15] M. Sánchez-Gordón and R. Colomo-Palacios, “Security as culture: A sys-
tematic literature review of devsecops,” in Proc. of ICSEW’20, 2020.

[16] A. Sojan, R. Rajan, and P. Kuvaja, “Monitoring solution for cloud-native
DevSecOps,” in SmartCloud, 2021.

[17] N. Tomas, J. Li, and H. Huang, “An Empirical Study on Culture, Automation,
Measurement, and Sharing of DevSecOps,” in Cyber Security, 2019.

617

https://www.inov.pt/en/index.html

