Flow Correlation Attacks on Tor Onion

Artifact
Evaluated

ANDss

Available

Functional

Reproduced

Service Sessions with Sliding Subset Sum

Daniela Lopes*, Jin-Dong Dong', Pedro Medeiros*, Daniel Castro*, Diogo Barradas!, Bernardo Portela$,

Joao Vinagre§, Bernardo Ferreira¥, Nicolas Christinf, Nuno Santos*
*INESC-ID / IST, Universidade de Lisboa, {daniela.lopes,pedro.de.medeiros,daniel.castro,nuno.m.santos } @tecnico.ulisboa.pt
TCaInegie Mellon University, jd0@cmu.edu, nicolasc@andrew.cmu.edu
iUniversity of Waterloo, diogo.barradas @uwaterloo.ca
8INESC TEC / Universidade do Porto, bernardo.portela@fc.up.pt, jnsilva@inesctec.pt
’ILASIGE, Faculdade de Ciéncias, Universidade de Lisboa, blferreira@fc.ul.pt

Abstract—Tor is one of the most popular anonymity networks
in use today. Its ability to defend against flow correlation attacks
is essential for providing strong anonymity guarantees. However,
the feasibility of flow correlation attacks against Tor onion
services (formerly known as “hidden services’’) has remained
an open challenge. In this paper, we present an effective flow
correlation attack that can deanonymize onion service sessions in
the Tor network. Our attack is based on a novel distributed tech-
nique named Sliding Subset Sum (SUMo), which can be deployed
by a group of colluding ISPs worldwide in a federated fashion.
These ISPs collect Tor traffic at multiple vantage points in the
network, and analyze it through a pipelined architecture based
on machine learning classifiers and a novel similarity function
based on the classic subset sum decision problem. These classifiers
enable SUMo to deanonymize onion service sessions effectively
and efficiently. We also analyze possible countermeasures that the
Tor community can adopt to hinder the efficacy of these attacks.

I. INTRODUCTION

Tor is a widely recognized low-latency anonymity network
that allows users to circumvent surveillance, eavesdropping,
and censorship [23, 37, 53]. It offers client-side anonymity
by enabling Internet users to browse the web without re-
vealing their IP addresses. This is achieved through multi-
layer encrypted channels known as circuits, involving three
relay nodes—guard (or entry), middle, and exit nodes—that
act as client proxies. Additionally, with onion services, Tor
also provides server-side anonymity. Formerly known as hid-
den services [23], these services permit website providers
to operate servers while concealing their network locations.
Instead of conventional DNS name resolution, they use unique
.onion addresses, which Tor resolves without revealing their
IP addresses. When a user visits an onion service, Tor estab-
lishes an encrypted communication session between the client
and the onion service via an intermediary relay node—the
rendezvous point. This node ensures their mutual anonymity by
simply forwarding packets and concealing their IP addresses.
With these privacy protections, onion services have become
instrumental for a range of users, including privacy-conscious
individuals, journalists, activists, and whistleblowers [13, 26].

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA

ISBN 1-891562-93-2

https://dx.doi.org/10.14722/ndss.2024.24337
www.ndss-symposium.org

In this work, we introduce a novel flow correlation attack
aimed at deanonymizing Tor onion service sessions. Although
the domain of Tor onion services has received much attention
regarding potential traffic analysis attacks, researchers have
predominantly been focused on website fingerprinting [44,
63, 66]. These methods analyze packet timings and sizes to
infer the visited .onion address, but they differ fundamentally
from flow correlation attacks, notably in their inability to
discover the visited onion service’s IP address in a Tor onion
service session. In contrast, flow correlation attacks correlate
the timing patterns and volume of packets exchanged in a
Tor circuit to deanonymize its endpoints [23], requiring an
adversary that can monitor the guard and exit nodes of active
circuits, such as colluding ISPs [46, 56, 59, 72, 75].

Approaches like DeepCorr [59] and DeepCoFFEA [62]
employ deep learning classifiers to accurately match flows
entering and leaving the Tor network. Yet, having been tailored
for Tor traffic toward clearnet websites, these classifiers may
falter with the unique characteristics of Tor onion service
traffic, e.g., onion services multiplex sessions from multiple
clients through the same TLS connection. Moreover, these
techniques have limitations in performance and potential sus-
ceptibility to overestimating the classifier results due to not
accounting for the imbalance between Tor flows to the clearnet
and total observed flows. To counter this second issue, Kwon
et al. [44] proposed circuit fingerprinting, which is capable of
accurately distinguishing clients from onion services engaged
in onion service sessions. However, despite its proven efficacy
in mitigating class imbalance issues, their technique has fallen
short due to recent updates in Tor protocols, in particular, the
application of padding schemes, rendering Tor cell counting
estimation more difficult [51, 67]. The flow correlation attack
presented in our study serves as a response to these challenges.

We present the Sliding Subset Sum (SUMo) attack, a new
flow correlation technique on Tor onion service sessions. This
attack can be leveraged by network-level adversaries, such as
colluding ISPs, to deanonymize the communication endpoints
of intercepted Tor onion service sessions. The inspiration for
our attack stems from our approach to correlate flow pairs.
Instead of relying on deep neural networks as in DeepCorr
or DeepCoFFEA, we adapted a variation of the well-known
NP-complete decision problem, the subset sum [20], and used
the absolute packet arrival times to perform flow correlation.
We model the packets received by clients and transmitted by
onion services as a bounded time series, which is the reason

for SUMo’s notable efficacy at identifying patterns. Compared
to deep learning classifiers, our technique relies on a simple
and efficient training phase to optimize hyperparameters, while
significantly accelerating flow correlation.

To mitigate the risks of the base rate fallacy [7], our SUMo
flow classifier is preceded by two filtering machine learning
(ML) classifiers. The first classifier aims to distinguish between
flows generated by clients communicating with onion services
and flows generated by onion services communicating with
clients. The second classifier further excludes all flows from
clients that are accessing the clearnet. As a result, we reduce
the number of potential flow pair combinations that need to
be examined in the search for correlated sessions. Impor-
tantly, these classifiers offer an enhanced circuit fingerprinting
technique capable of effectively bypassing the circuit padding
defenses recently incorporated into Tor [51].

We implemented the SUMo pipeline and extensively eval-
uated the effectiveness and performance of our attack using
datasets derived from realistic Tor onion sessions. These ses-
sions involved clients and onion services under our control,
with the generated traffic traveling through the Tor network.
We crafted our experiments following the Tor research safety
board recommendations [77], to prevent the collection of
information about the activities of real Tor users. These exper-
iments yielded three sizeable datasets of onion service session
flows through interactions between clients and onion services
deployed across 14 distinct geographic locations worldwide.

The highlights of our results are as follows: i) assuming
flawless filtering during the initial phase, our SUMo classifier
achieves a precision of 99.64% and a recall of 99.65% in
correlating client-side and onion service-side flows to their
respective Tor onion service sessions; ii) upon enabling the two
flow filtering classifiers of the pipeline, the SUMo classifier
retains high effectiveness, attaining a precision of 99.5%
and a recall of 89.6% for sessions of any duration, and a
precision of 99.76% and a recall of 92.07% for sessions lasting
over 6 minutes; iii) our flow filtering classifiers represent
a leap forward in circuit fingerprinting, demonstrating the
ability to endure circuit padding defenses while achieving an
average precision above 99%; iv) our SUMo classifier yields a
throughput two orders of magnitude higher than DeepCoFFEA,
contributing to the practicality of flow correlation attacks. We
also discuss potential countermeasures in § VI. Our source code
and datasets are publicly available [2].

In summary, our contributions are as follows.

e A novel classification algorithm that enables efficient and
accurate flow correlation for Tor onion service sessions;

e Improved circuit fingerprinting classifiers, capable of by-
passing the circuit padding defenses implemented in the
latest versions of Tor;

e A robust classification pipeline, demonstrating the prac-
tical application and effectiveness of deploying SUMo
attacks on Tor onion service sessions;

e A large dataset for enabling flow correlation on Tor,
encompassing both clearnet and onion service websites;
this dataset represents a valuable resource for in-depth
study and analysis of the Tor network;

e A comprehensive evaluation of the described techniques,
showing that SUMo attacks are feasible and effective.

II. MOTIVATION AND THREAT MODEL
A. Anatomy of Tor Onion Service Sessions

A typical Tor circuit preserves the anonymity of the circuit
initiator by encapsulating TCP/IP streams into onion-encrypted
and fixed-sized cells, which are propagated (using TLS) across
three Tor relays known as guard, middle, and exit. Deploying
anonymous TCP/IP servers is possible using onion services.

Briefly, connections with an onion service are established
as follows. On start-up, the onion service recruits multiple
random Tor nodes as introduction points, and then publishes
its .onion address and the identifiers for its introduction
points in Tor’s public directory server. Using this address, a
client can perform a lookup to learn about one of the onion
service introduction points. Next, a client connects to the
introduction point, signaling to the onion service its intention
of establishing a connection with it via a given rendezvous
point, i.e., an intermediate Tor relay chosen by the client.
Finally, through two independent circuits, both the client and
the server establish a connection to the rendezvous point. The
resulting onion service session allows the client to interact with
the server, e.g., browsing a website hosted on the server, with
both client and server remaining anonymous.

B. Website Fingerprinting of Tor Onion Services

Onion services are potentially susceptible to traffic analysis
attacks [12, 41]. Website fingerprinting, the most studied
attack, identifies user visits to onion services. First studied by
Kwon et al. [44] and later by others [31, 63, 66], it involves
intercepting traffic between a client and its guard node and
matching the observed traffic to a profile of pre-recorded onion
service transmission characteristics. Hence, the attacker only
needs to monitor the traffic of the targeted client.

However, website fingerprinting is not designed to deano-
nymize onion services’ IP addresses. These attacks also require
pre-existing fingerprints, limiting their applicability to known
onion services. Fingerprint ambiguities due to factors like
mirror websites [8, 88] and characteristics of onion services
can degrade precision [39, 63]. Hence, an attack that can
deanonymize IP addresses, eliminating exhaustive fingerprint
collection, would be compelling, particularly when there is no
prior knowledge of an onion service’s existence.

C. Flow Correlation Attacks on Tor

Another category of traffic analysis attacks on Tor are
commonly known as flow correlation attacks [59, 62]. They
allow an adversary to match a given flow entering the Tor
network with another exiting it, thereby deanonymizing the IP
addresses of the communicating endpoints. This attack is based
on the correlation of traffic metadata (e.g., volume, inter-packet
timing) observed at various ingress and egress points within
the Tor network. Although the adversary must analyze traffic
from multiple vantage points, it offers additional advantages
over website fingerprinting. Firstly, flow correlation eliminates
the need for prior knowledge of specific onion services. An
adversary can directly attempt to correlate a target user’s Tor
traffic, thereby unmasking the IP address of the engaged server.
Secondly, flow correlation attacks may mitigate ambiguities,
since they do not rely on fingerprints and can naturally adapt
to changes in website content over time.

Despite their potential advantages, flow correlation attacks
have not yet been extensively studied in the context of Tor
onion service traffic. To the best of our knowledge, existing
research primarily focuses on Tor traffic to the clearnet and
the deanonymization of Tor users’ accesses to clearnet destina-
tions. In particular, the state-of-the-art techniques, represented
by systems like DeepCorr [59] and DeepCoFFEa [62], leverage
deep learning classifiers to extract critical Tor traffic features
and define a generic correlation function before attempting to
correlate specific flows. However, it remains uncertain whether
these techniques can be effectively applied to correlate flows
within Tor onion sessions due to three primary challenges:

Onion traffic classification challenges: Current deep learning
classifiers for Tor flow correlation are typically trained on Tor
traffic to the clearnet, which raises two challenges. Firstly, the
traffic characteristics of onion service sessions display marked
differences. For instance, packet sizes at the server endpoint
are manipulated by Tor to fit fixed-sized cells. These packets
remain within Tor tunnels, as opposed to Tor traffic to the clear-
net, which is unpacked and sent to the open web destination
through HTTP(S) or other TCP/IP application-level protocols.
This transformation in packet size distribution may potentially
degrade classifier accuracy. Secondly, these classifiers operate
on the assumption of a one-to-one correspondence between
client-side and server-side flows, thereby enabling a direct
match between a flow sample collected at the guard node
and another at the exit node. Yet, this is not always the case
with onion services. An onion service can establish concurrent
sessions with multiple clients, leading to the multiplexing of
traffic from various sessions through the same TLS connection
between the onion service and its guard node. This concurrency
may degrade the correlation accuracy of existing classifiers.

Performance and maintainability challenges: Deep learning-
based classifiers are computationally heavy. To correlate clients
with onion services, multiple combinations of pairs must be
tested to see if there is a match. Hence, scalability bottlenecks
can easily arise. Furthermore, as traffic patterns change, deep
learning-based classifiers tend to require frequent model up-
dates along with collection of data for training. The evolution
of traffic characteristics and erosion of the deep learning model
may also degrade classification accuracy, requiring spending
more resources for updating the model.

Base rate fallacy challenges: Base rate fallacy [7] occurs
when the low occurrence of the rare class is overlooked,
leading to an overestimation of the classifier’s performance. In
the context of Tor onion service traffic analysis, the base rate
fallacy can emerge due to the stark disproportion between the
volumes of Tor traffic to the clearnet and Tor onion service
traffic. Given the lesser volume of onion service traffic, a
classifier not calibrated to account for this imbalance might
result in a high number of misclassifications, inadvertently
identifying Tor traffic to the clearnet as onion service traffic.
We aim to mitigate this effect by filtering only the flows that
are interesting to our main classifier. Existing deep learning
classifiers often sidestep this issue, as their focus is primarily
on Tor traffic to the clearnet. However, in our study, we
must address and mitigate this problem; otherwise, the ef-
fectiveness of our classifier could be significantly reduced.
We propose to achieve this by implementing a preliminary
filtering step prior to feeding the flows to the classifier. This

strategy aims to exclude irrelevant Tor traffic and prevent
unnecessary comparisons of flow pairs, particularly those that
are evidently non-correlated. To implement this effectively,
we must first scrutinize existing work and discuss the open
challenges associated with this step.

D. Circuit Fingerprinting for Tor Onion Service Traffic

Kwon et al. [44] introduced the first approach to tackle the
base rate fallacy problem in the analysis of Tor onion service
traffic. They aimed to enhance their website fingerprinting
attack (see §1I-B) by: i) distinguishing entry guard connections
into two classes — those originating from Tor clients and those
coming from onion services, and ii) differentiating whether a
Tor client is interacting with a clearnet server or with an onion
service. With this approach, all traffic extraneous to their study
is discarded, thus diminishing the propensity for misclassifi-
cation. Their technique, known as circuit fingerprinting [44],
relied on the adversary’s ability to count the number of
cells exchanged during the transmission to identify specific
circuit construction sequences and handshake characteristics
of different types of Tor onion traffic (e.g., distinctive cell
sequences emerge when clients or onion services connect to
their rendezvous point). To segregate these diverse traffic types,
Kwon et al. used decision tree classifiers, supplying them with
the directional data of a fixed sequence of Tor cells.

However, this method was rendered ineffective in 2019
when Tor version 0.4.1.5 integrated padding cells while
establishing circuits towards introduction and rendezvous
points [51]. This defensive countermeasure against circuit fin-
gerprinting effectively neutralized the attack outlined by Kwon
et al. on recent versions of Tor [40, 41]. Other studies [67]
have confirmed that padding cells notably diminish the success
rate of deanonymization attacks reliant on the analysis of Tor
circuits’ cells. In light of this, we seek to develop an updated
circuit fingerprinting technique that will act as a pre-filtering
stage prior to applying the classifier for flow correlation of Tor
onion service sessions. Analogous to Kwon et al. [44], we aim
to tackle the base rate challenge, but within the framework of a
distinct attack—specifically, the flow correlation of Tor onion
service sessions, rather than website fingerprinting.

E. Threat Model

Our overarching goal is to investigate the feasibility of
flow correlation attacks that are capable of deanonymizing
the IP addresses of Tor onion service sessions. We aim to
approximate a global passive adversary who is capable of
intercepting traffic at the guard nodes and correlating flow pairs
from the same onion service session. Our adversary can be
realistically portrayed as a coalition of ISPs. These ISPs take
advantage of the imbalanced geographical distribution of the
Tor network, passively observing, gathering, and sharing the
metadata necessary to carry out correlation attacks [38, 60].
We assume that these ISPs can monitor all traffic both within
and across their networks. This involves intercepting TCP/IP
flows generated by Tor guard nodes and collecting per-packet
metadata from each flow, including source address (IP and
port), destination address (IP and port), packet size, and
packet arrival time. ISPs are not required to collect additional
metadata or delve into the payload of the packets.

Given that guard nodes’ IP addresses are public, ISPs
can set network filters to monitor flows of interest in their
networks, thus enabling correlation attacks in a non-intrusive
way. We assume the adversary is computationally bounded and
thus unable to break Tor protocols’ underlying cryptographic
schemes. Colluding ISPs do not have to actively manipulate
the traffic, i.e., drop, delay, tamper with, or inject packets.

The coverage of the attack is contingent on the quantity
of guard nodes that the adversary can monitor. Full coverage
denotes an adversary that is capable of intercepting traffic from
all existing guard nodes, thereby enabling the collection of both
client-side and server-side flows for every onion session in the
Tor ecosystem. This situation presents the most favorable con-
ditions for the adversary, but it is also the most challenging to
achieve, as it requires the cooperation of numerous ISPs across
various jurisdictions. Partial coverage denotes an adversary
that can only intercept traffic from a fraction of existing guard
nodes, thereby limiting the observable Tor onion sessions.

Importantly, we do not to suggest that ISPs could execute
this attack indefinitely, correlating all Tor onion service ses-
sions intercepted for an unbounded timeframe. Such a contin-
uous operational mode would demand substantial resources,
which is beyond the scope of our current study to analyze.
Instead, we aim to demonstrate that, given a specific time
window, if ISPs are capable of intercepting traffic and possess
the necessary storage, computational, and bandwidth resources
to collect and process the intercepted data, then the attack
could feasibly be carried out with high precision in practice.

III. THE SUMO ATTACK
A. SUMo Attack Overview

Figure 1 depicts how a SUMo attack can be launched in
a concrete, albeit simplified scenario. Three users — Alice,
Bob, and Charlie — establish independent sessions with two
different onion services bearing the onion addresses X.onion
and Y.onion. Each onion service has an IP address that is
never exposed to any other party beyond the guard node
directly connected to each server, i.e., G1 and G4, and the ISPs
sitting along the path between each server and its guard node,
i.e., ISP4 and ISPS5. Similarly to the server counterpart, each
client has an IP address that is only visible to the upstream
guard node and intermediate ISPs. This example shows the
network paths of the three onion server sessions, omitting the
session establishment steps covered in the previous section.

The SUMo attack is executed through a system composed
of two key components: multiple probes and a correlator.
The probes are network devices strategically positioned within
ISPs that intercept network traffic and gather metadata from
monitored onion service traffic. Further, these probes pre-
process the captured metadata by discerning the flows that
belong to the client-side and server-side of an intercepted
onion service session. In this example, we consider an attacker
with partial coverage, intercepting traffic from a fraction
of 4 out of 5 ISPs. On the other hand, the correlator is
tasked with examining the flow metadata obtained from the
probes and recognizing pairs of client-side and server-side
flows that pertain to the same onion service session. If such
pairs are identified, the correlator produces a set of session
records. Each record provides information about a correlated

<D}

Bob ISP2

Charlie - ISP5 Y.onion
SPS Tl -
""""" Comeer

Figure 1: SUMo attack setup.

pair, including client and server IP addresses, respective flow
pair metadata, and the similarity score. The correlator can be
instantiated using one or more servers managed by the ISPs
themselves or by a third party, such as a cloud provider.

This system has the ability to handle specific deanonymiza-
tion queries, allowing the attacker to confine the search space
of the flows to be correlated by narrowing certain ISPs, ranges
of IP addresses, and/or time windows. Upon receiving a query,
the correlator pulls the flow metadata of interest from the ISPs
encompassed by the query, refining its correlation operations.
Observe that all the ISPs depicted in Figure 1 participate in
the attack except for ISP2. As a result, flow Bob<+G3 could
not be captured by the probes, preventing the correlator from
finding a proper match for one of the flows observed between
G1 and X.onion. In this case, the correlator only possesses
flow information to correlate sessions from Alice to X.onion
and from Charlie to Y.onion obtained by ISP1, ISP3, ISP4,
and ISP5. This figure also illustrates that some flows may be
hard to analyze when multiple concurrent sessions address the
same server, as in the case of Alice and Bob. Indeed, since
G1+X.onion multiplexes both these sessions in the same TLS
stream, the flow collected by ISP4 will include packets from
concurrent sessions, making them difficult to distinguish.

B. System Architecture

To develop our attack, our approach consisted in splitting
the traffic analysis workload in such a way that it would be
possible to scale the analysis by reducing the amount of data to
be transmitted to and processed by the correlator. This insight
has led us to design the attack based on a distributed pipeline,
implemented partly by the probes and partly by the correlator.
Furthermore, each of these pipeline segments was internally
structured as a set of modular flow processing stages, allowing
us to employ suitable classification algorithms independently.
The resulting pipeline architecture is illustrated in Figure 2.

The pipeline operates in two online phases, filtering and
matching, and one offline training phase. The filtering phase
is implemented by the network probes. Each network probe
leverages a packet sniffer and feature extractor to generate
a feature vector for every flow. For optimal results, a probe
should monitor both the establishment of the connection and
as much of the session duration as possible. Subsequently, it
distinguishes client-side flows from onion server-side flows in
the source separation stage (step 1), and separates the client
flows to onion services from the client flows to the clearnet
in the target separation stage (step 2). Both source and target
separators are realized as standalone ML classifiers to achieve

> > - >
Packet > Pair concurrent flows Bucketize _each Sliding
: > sniffer EE@ > =y flow pair ~—»| subset sum
7 Onloﬂn service >l E@ E 5
e ows Client flows e @ @ _—
Traffic 8 . . to ity S T 1 T O B
samples QV Onion services H to ity _thr
pl : . r)
1 Source separation 2 Target separation i to t4 } .7 i- minDuration
Feature ’ ’ 3 to ty Ty
extractor ‘
—> X s v |, - epocnsize IR - Dotows | | [
i- epochTolerance f‘»_ tsinterval L bktsPerWindow correlate? —»@@
Flows o Client flows Clearnet 6
........................... : flows —| Gorrelated
- . sessions
Matching Phase (online on correlator)

SUMo parameters

epochSize, epochTolerance,
tsinterval, thr, bktsPerWindow,

bktsOverlap, A, minDuration

gradient boosting decision trees

« Y Train
Hyperparameter| Test
le—]

optimizer
Validate

s\ Onion service flows Client flows with
Flow statistics | Onion services
on timing and

length

Training Phase (offline)

—r

.
Client flows

- Clearnet flows
training dataset

test dataset
validation dataset

Figure 2: The SUMo pipeline comprising two online phases — filtering and matching phase — and one offline training phase.

optimal individual performance by directing each classifier to
discern specific characteristics of the traffic.

The matching phase is performed by the correlator, which
retrieves the flow metadata from the probes, initiating a series
of operations to identify correlated flow pairs. First, in step
3, it groups time overlapping flows into potential flow pairs.
Then, in step ‘4, it organizes the flow packets into buckets.
These are passed onto the sliding subset sum module in step
5, which assigns each flow pair a similarity score. Finally,
in step 6, it determines whether the flow pair is correlated
based on this score. Key features in this process include packet
volume statistics and temporal metrics in the filtering phase,
with absolute packet times critical in the matching phase.

The training phase can be performed offline, as it uses
separate datasets for training and validation of the decision
tree classifiers of the filtering phase. This step fine-tunes
optimal hyperparameters for the decision trees and generates
models for the filtering phase. Also, it helps identify the
best hyperparameters for the matching phase. The following
sections elaborate these phases in detail.

C. Filtering Phase

To ensure that the base rate for our SUMo flow classifier
is confined solely to Tor traffic associated with onion services
— thereby reducing the chances of misclassification during
the matching phase — we have developed an enhanced circuit
fingerprinting method that comprises two critical stages:

Source separation: In the first step of the filtering phase, we
aim to distinguish Tor clients’s flows from those of onion
services. Prior research [44, 66] revealed distinct network
connection patterns for these two kinds of flows. However,
it is uncertain whether these attacks still work given the recent
introduction of circuit padding [40, 67]. Yet, we confirmed
that Tor’s current version still presents differences that allowed
us to devise a new classifier that accurately separates clients
from onion services. Clients generally send smaller volumes
of traffic and receive larger volumes compared to onion

services. We trained a gradient boosting model on summary
statistics from flow packet lengths, inter-arrival times, and burst
behavior [10, 31]. The top 5 features with higher importance
are incoming burst bytes (40, 50, 60, and 70 percentile) and
outgoing packet sizes 80 percentile, in no particular order.
This model (step 1 in Figure 2) classifies each flow as client-
originated or onion service-originated.

Target separation: The second stage of filtering phase aims to
identify and exclude from further analysis all flows issued by
Tor clients to the clearnet. These accesses can be distinguished
in two ways. First, circuits to onion services are longer and
expected to experience a larger latency and packet reordering.
This causes differences in burst volumes, since requests to
clearnet websites exhibit shorter duration and larger bursts of
data in fewer bins. Second, onion service pages are different
from clearnet websites, generally presenting less resources and
smaller pages [19]. To capture these differences, the target
separation (step 2 in Figure 2), consists of a gradient boosting
classifier that only receives the set of flows labeled by the
source separator as originated from a client. Using the same
features as the source separator, it classifies flows as targeting
clearnet websites or as targeting onion services. The top 5
features with higher importance are outgoing packet times (20
and 30 percentile), incoming burst bytes (40 and 50 percentile),
and outgoing max burst, in no particular order.

D. Matching Phase

The matching phase takes the client and onion service flows
produced by the filtering phase and attempts to correlate them
pairwise. As illustrated in Figure 2, the algorithmic steps aim to
determine whether a specific client flow (f.) correlates to one
of the onion service flows (f,). This process is then repeated
for the remaining client flows against all other onion service
flows that remain viable correlation candidates.

Pairing up flows overlapping in time: A comprehensive
comparison of each client flow with every onion service flow
would be inefficient, as the majority of combinations within a
given sampling period do not overlap temporally, assuming

a certain level of clock synchronization. As a result, our
algorithm only compares onion service flows that temporally
overlap with the current client flow f. (step 3 of Figure 2).
To determine whether an onion service flow overlaps with a
client flow, our algorithm divides the flows into time epochs —
sections of epochSize seconds that partition the duration of the
dataset; it then only considers onion service flows that occur
within a similar epoch range (i.e., starting and ending within
the same epochs, allowing for a slight epochTolerance).

Bucketizing each flow pair: Upon identifying the candidates
for flow pairs between f. and the time-overlapping onion
service flows f,, we fix the initial and final absolute times
of a client flow for each pair and split the received packets
during this time interval into buckets of, e.g., 0.5 seconds
each (tsInterval), doing the same for the onion service flow
within the same time interval of the client flow (step 4).
Empirically, we found that using coarser-grained time units
to represent the packets provide better results. This approach
simplifies the input for our algorithm and compensates for
packet delays and reordering that naturally occur in Tor’s
multi-hop network. Following this operation, each client flow
fc can potentially combine with multiple onion service flows,
fors - fo,. Figure 3 illustrates these bucketized flow pairs
along with the subsequent decision-making process used to
determine if a flow pair is correlated. We then apply the sliding
subset sum technique to each flow pair, as described next.

Computing the sliding subset sum: To predict whether two
flows are correlated, we propose a volumetric flow similarity
algorithm calculated over a sliding window across pairs of
client and onion service flows (step 5). This approach is
more efficient than deep learning classifiers [59, 62]. We call
our algorithm the sliding subset sum, as it builds on the
classical subset sum problem [27, 45]. Our algorithm operates
as follows. For each bucketized pair (fe, fo,), it aggregates
buckets in windows (for example, four buckets per window),
as defined by bktsPerWindow. It then computes our subset
sum flow pair similarity score per window w;q, (detailed in
§1I1-E), yielding a similarity score (scores|[w;q.]). The window
then moves, displaced by a stride equal to the bktsOverlap
number of buckets, and this continues until the entire flow
pair is processed. This results in a vector of all window scores,
scores(fe, fo,), as depicted in Figure 3. Figure 4 illustrates a
real example of a client and onion service flows of a correlated
session. It zooms in on packets between 45-55 seconds after
the session begins and highlights a particular window (window
number 49) over which the subset sum flow pair similarity
score is computed. A complete explanation of the algorithm
and parameter selection can be found in Appendix A.

Final flow pair correlation decision: Once the algorithm
finishes computing the sliding subset sum for all potential flow
pairs between the client flow f. and its candidate onion service
flows fo,, ..., fo,, there will be a score-per-window vector
scores|w;q,] for each flow pair. The last step 6 generates
a final correlation result. Firstly (see Figure 3) each score
vector scores[w;q,| is input into a function that calculates a
scalar value S(f., f,,), which represents the final score for
that specific flow pair candidate; §III-F elaborates on how
this similarity score is computed for each flow pair. Then,
a decision process is undertaken. The algorithm selects the
flow pair with the highest score among all pairs, following the

fo [-[1]s]o[e]-]

(fe.fo1) are considered correlated
The remaining combinations aren't
r

7’| Sliding Yes
fo1[--[0]oJ20[16]-| | |subset S(fc,fo1) — S(fefo1)
som |0 s S(fcyfoﬂ,
fonl--[s[3][5]2]-] F] st for) = Stefon)
LI L | J No
window Wigx Scores per window FinalScore per l
Client and onion scores[Wigy] flow pairofa No combinations are

service flows client session considered correlated

(bucketized)

Figure 3: Flow pair correlation decision process.

v <~ window 49
$50)
240 <window 48 ,
g
330
=
220 N\
g _
Elo e 777/ SN
© Qs 46 a7 a8 49 50 51 52 53 54 55
I
RS

50, <<
£40
]
830
g20
210

945 46 47 48 49 50 51 52 53 54 55
Seconds

Figure 4: Zoom-in on packets between 45 and 55 seconds.

rationale that since only one of the candidates can be correlated
with the client candidate, we should choose the candidate with
the highest similarity from the potential candidates. The algo-
rithm then makes a decision based on a predefined threshold
value (thr). If the highest ranking flow pair’s score exceeds
the threshold, that pair will be considered correlated, and
the remaining ones will be deemed uncorrelated. Otherwise,
if the highest-ranking flow pair’s score does not surpass the
threshold, all flow pairs will be marked as non-correlated.

E. Subset Sum Similarity Score per Window

To calculate the similarity score for a flow pair in a window
— e.g., window 49 in Figure 4 — the algorithm executes a
variation of the subset sum problem. The classical subset sum
problem takes a set of positive integers A = {a; } and a positive
integer M and looks for a subset of A such that the sum of all
the subset’s members equals M. If a solution exists, then subset
sum returns a vector X = {z;}, as shown in Equation 1.

> awmwi =M, Viz€{0,1} 1)
i=1
> ami € [M—AM+A], Viz; €{0,1})
i=1

In our context, we use the subset sum to identify if packet
sizes (a;) sent by the onion service match the total bytes (M)
received by the client in a window, allowing for a range of
M +A. We define A as the onion service’s sent packet buckets
in a window and M as the client’s received packet sum in the
same window. For example, in Figure 4, there are four buckets,
A =1{5,3,5,2}, and M = > ({1,3,0,4}) = 8. We focus on
one direction (packets from the onion service to the client)
for computational efficiency and because client-sent packets
do not significantly represent visited websites.

Despite subset sum’s NP-complete nature, it proves effec-
tive in our scenario using a dynamic approach, confined by
the number of buckets and total packets in each window. We
construct a lookup table (Table I), to calculate all possible
subset sum values for A. Each table row represents one subset
of A, while each column indicates a possible sum value. A
vin an entry [r, c] denotes at least one subset in row r whose
total sum equals the column ¢ value. For instance, for subset
Ay = {5, 3}, vappears in columns 3, 5, and 8, corresponding
to the sums of the possible subsets of A;. We generate this
table for a given onion service flow’s bucket sizes, compute
M from the client flow’s bucket sizes, and check the table’s
final row within the range [M — A, M + A] (with A = 4 for
simplicity). In our window 49 example (Table I), we look for
a v'in the final row’s columns between [4, 12].

Our algorithm assigns a score of 1, 0, or —1 to each
window: 1 signifies a match in the lookup table, indicating
that the client and the onion service flows possess similar
volumetric properties in the given window. Conversely, a score
of —1 indicates a lack of match in the lookup table, suggesting
dissimilarity between the flow pairs in that window. When
neither the client nor the onion service sends/receives packets
in a window, or if the client receives packets without any
sent by the onion service, the algorithm skips the lookup table
construction and assigns the score as 0 or —1, respectively.

F. Adjusted Similarity Score per Flow Pair

We compute the subset sum algorithm described above
on all the windows that compose the flow pair, obtaining a
score for each window stored in a vector. To obtain the final
score, we first readjust them. Essentially, correlated sessions
may exhibit a significant number of windows with score —1.
This is due to some network delays, packet reordering, among
other factors, but these tend to be isolated. Windows with score
1 tend to be in consecutive blocks. Contrarily, pairs of flows
that do not represent a session tend to have several consecutive
windows with score —1, and more isolated windows with score
1. To emphasize this effect, we increase the contribution of
consecutive windows with the same score to the final score,
as shown in Equation 3, recalculating the weights in scores.
scores[i] if i = 0V scores[i] =0,
= { scores[i] + K x ¢(1,i — 1)

scores[i] — K x ¢(—1,i—1)

if scores[i] > 0,
if scores[i] < 0

scoresli]

©)

K is a parameter that influences the importance given to
consecutive windows with identical scores. Through experi-
mental determination, we set it to 0.1. The auxiliary function
¢(s,w) counts the number of consecutive score values s to
the left of the window index w. The final similarity score is
the average window score post processing. Establishing a score
threshold (thr) balances precision and recall: a lower threshold
increases both false positives and the detection of correlated
flows, while a higher threshold does the opposite.

G. Hyperparameter Tuning

The proper selection of hyperparameters is vital for in-
creasing the generalization ability of a classifier, ensuring its
effectiveness on unseen instances. In the context of SUMo’s

Possible subset sum values with A
A 1234567 891011121314 15
Ao ={5} v
A1 ={5, 3} v v v
As ={5, 3, 5} v v v v v
As ={5,3,52} v v \/. v v v v

Table I: Lookup table for subset sum algorithm, per window.

pipeline, we seek to identify hyperparameter configurations
that allow SUMo to generalize well to network flows which
may exhibit disparate characteristics than the ones our models
have been initially trained on, including websites’ characteris-
tics, network delays, or client browsing behaviors. Concretely,
SUMo uses the training phase to set the parameters for its
algorithms. We highlight that a real-world deployment would
also benefit from periodic retraining, to adapt these parameters
as the characteristics of captured traffic flows evolve.

We chose to use Bayesian optimization to perform hy-
perparameter tuning [25]. Instead of conducting an extensive
grid search over the full range of possible values for each
parameter, which can be a cumbersome and time-consuming
task, Bayesian optimization allows for an iterative exploration
of the hyperparameter space, ultimately yielding near-optimal
configurations while only requiring the exploration of a few.
Specifically, we used tree-based Parzen estimators [14] to
conduct the exploration of the search space for the classifiers
involved in SUMo’s filtering and matching phase.

For optimizing SUMo’s filtering phase classifiers’ hyper-
parameters, we train the classifiers on a training dataset and
assess their performance on a separate validation dataset (see
§IV). Precision achieved during validation is the guiding metric
for our optimization. For the hyperparameters of the matching
phase classifier, we establish a minimum precision across all
thresholds, and select the configuration that maximizes the F1-
score, striking a balance between precision and recall.

H. Explored Approaches Before Converging on SUMo

Before reaching our current SUMo attack, we explored
many alternative approaches to correlate onion service traffic,
which we discuss in the following. Our first approach was
retraining DeepCorr [59] on onion service traffic. However,
the classifier failed to converge despite trying multiple con-
figurations. Additionally, the extensive resources required for
training and testing steered us away from deep learning ap-
proaches, due to the large-scale nature of correlation attacks.

Subsequently, we explored more scalable alternatives. We
started by comparing time series using distance measures such
as dynamic time warping [21]. However, delays and volumetric
changes introduced by onion service circuits’ multiple hops
significantly change the shape of the time series curves at
both the client and onion service sides. This yields algorithms
such as dynamic time warping ineffective at traffic correlation,
despite being effective at anomaly detection. Due to its appli-
cability to intrusion detection [49], we also tried to correlate
flows based on their frequency using fast Fourier transforms.
This method is employed by the popular Shazam mobile app
to identify music based on short audio samples. However, we
observe similar limitations as in distance measures. These algo-
rithms are very sensitive to slight frequency perturbations, thus
yielding poor results due to the delays introduced throughout
onion service circuits, causing packet frequency distortions.

Seeking a more flexible algorithm, we explored combina-
torial optimization techniques for analyzing packet volumes on
a time series. In particular, we started by applying the original
subset sum [20] algorithm to align packet volumes on both
client and onion service sides on a per-request granularity.
That is, rather than employing our current sliding window
algorithm to match packet sizes for the entire flow pair, we
first estimated which packets within the flows correspond to
individual requests (e.g., an HTTP GET request to a web page),
segregated all the requests of each flow, and tried to match a
request sent by the client with a request received by the onion
service. This is done by applying the subset sum algorithm
between the total volume of the client-side request and the
packets within the server-side request. Then, we combined the
results for all requests composing a session to decide whether
each session was correlated. However, the obtained results
were not satisfactory, mainly because accurately splitting flows
into requests is error-prone, causing differences in the number
of packets accounted for at the client side and onion service
side for a given request, degrading the classifier’s precision.

1. Implementation

We implemented an open-source prototype of SUMo [2]
in about 5500 lines of Python code. Next, we provide relevant
implementation details on the filtering and matching phases.

Filtering phase: We used the scapy Python library to extract
relevant features from the original traffic samples that will
be used to train, validate and test the models. For storage
efficiency, we only keep the packets’ headers. As such, we
consider the packet size to be the size of the Ethernet frame on
the wire, and we discard TCP ACK payload empty packets, as
previously described in website fingerprinting literature [82].
To implement the traffic differentiation mechanism in the
source separation and target separation modules, we drew
inspiration from earlier encrypted traffic analysis tasks in
related domains [10, 30, 31], and made use of XGBoost [18]
— a lightweight gradient boosting decision tree classifier —
through the scikit-learn and xgboost Python libraries. To
optimize the parameters of both classifiers in the filtering
phase, we used the hyperopt Python library, an efficient and
flexible implementation of Bayesian optimization.

Matching phase: We implemented our sliding subset sum
algorithm in C++ and used the ctypes Python C++ wrapper
to call it from our Python code. We used OpenCL 3.0 [78] for
GPU support. We applied GPU’s single instruction multiple
data parallelism to make our implementation more efficient.
We craft our code so that the GPU attains two levels of
parallelism: i) process multiple flow pairs simultaneously, and
ii) process multiple windows of the same pair simultaneously.
We also use hyperopt to perform hyperparameter tuning.

IV. EVALUATION METHODOLOGY

The goals of our evaluation are twofold: i) to assess the
effectiveness of SUMo when correlating browsing sessions
established towards Tor onion services; and i) to assess the
performance and scalability of SUMo. Below, we describe the
metrics used in our evaluation and our experimental testbed.

Metrics: Throughout our evaluation, we heed the guidelines on
appropriate performance measurements for intrusion detection

systems [6] and measure the effectiveness of SUMo using
precision and recall. Precision gauges the quality of our
positive results, i.e., the fraction of truly correlated browsing
sessions among all the sessions deemed correlated by SUMo.
In turn, recall measures the quantity of our positive results,
i.e., the fraction of truly correlated browsing sessions deemed
as correlated by SUMo. To evaluate performance and scala-
bility, we assess the correlation throughput — i.e., correlations
per second — and the computational resources — e.g., CPU
usage and memory usage — required to process and correlate
browsing sessions, for every stage of our execution pipeline.

Experimental testbed: Existing datasets from related research
on Tor either lack onion service traffic [59, 62], lack geo-
graphical diversity [44] or contain Tor onion service traffic
traces but only from clients’ endpoints [63]. This leaves a
gap for evaluating flow correlation attacks that require flow
information also from onion service endpoints. To address
this issue, we sought to generate an onion service interaction-
focused dataset, striving to realistically mimic a small-scale
Tor onion service ecosystem. Despite its limitations, this is a
large dataset covering Tor flows to both clearweb and onion
services, emulating aspects like geographical distribution, re-
quest concurrency, client-side browsing behaviour, and diverse
servers. We set up 48 virtual machines (VMs) hosting onion
services and 60 VMs acting as Tor clients, scattered in 14
different locations across the globe (see Appendix B) and
connected to the live Tor network. Each VM is an instance
of cos-101-1ts, a container-optimized image provided by
Google Cloud provisioned with 1 vCPU and 4GB RAM. Each
onion service runs on an isolated Docker container that runs a
0.4.7.10 Tor process, according to the v3 onion service speci-
fication [76]. Clients also run on an isolated Docker container
that executes a 0.4.7.10 Tor process and issues requests to Tor
via the Python libraries selenium [58] and tbselenium [3], an
open-source automated browser framework and the respective
extension to instantiate a headless Tor browser. All VMs also
run a second container for managing the collection of network
traffic and obtain ground truth data about the start and finish
times of clients’ Tor onion service browsing sessions.

Creating dummy onion services: To select which content to
host in our testbed’s onion services, we started by selecting
plausible onion service content categories, as described in the
study of Owen and Savage [65]. Then, we used these categories
as keywords to crawl ahmia.f1i, a clearnet search engine for
Tor onion services. From these search results, we filtered out
duplicated websites using CTPH fuzzy hashing [43] and man-
ually selected 48 onion services that represented a considerable
diversity in terms of content, size, types of resources, and
multitude of webpages to host in each of our VMs. Appendix B
sheds more details over the specific characteristics of the
websites being served by each representative onion service.

Replicating onion services’ popularity distribution: Pre-
vious studies [15, 65] have shown that the distribution of
requests to onion services is highly skewed towards a small
set of very popular onion services. To generate a set of onion
service interactions that follows realistic users’ access patterns
and provides multiple levels of concurrency, we used a Zipf
distribution to obtain skewed popularity values for our set of
onion services [17]. This distribution describes a probability
distribution where each frequency is the reciprocal of its rank

Sessions to Sessions to Requests to Requests to

Dataset N . . .
onion services clearnet onion services clearnet
OSTrain 14654 8697 71679 39400
OSValidate 7492 9284 29845 41715
OSTest 7046 7922 28224 35725

Table II: Number of sessions and requests collected by dataset.

1.0

Q ,\,Q ,1’0 ,,)Q N

Q Q Q O O O O
Vv ™ Q” QO QO O
A \P"L\”&

Session duration Requests per Sessions per

(minutes) session (#) onion service (#)
Figure 5: Statistics for the OSTest dataset.

multiplied by the highest frequency, and can be parameterized
by a. We used « = 1.5 because it provides us with a
good onion service diversity in popularity and resulting access
concurrency. This resulted in onion1 being accessed more
than half the times and having a majority of sessions with
high concurrency, followed by other onion services which
got decreasing accesses and concurrency. Figure 8 depicts
the obtained session concurrency, which will be later used to
contextualize the efficacy of SUMo on flows towards onion
services with different numbers of concurrent sessions.

Dataset collection: To build our dataset, we emulated a set
of concurrent browsing sessions towards onion services and
clearnet websites via Tor. To this end, we collected the traffic
generated by our Tor clients and onion services while clients
repeatedly accessed onion services and the top 150 accessed
websites according to the Tranco ranking [68], in parallel.
We devise browsing sessions as a sequence of requests to the
same website, but to a random webpage within that website.
Each request is spaced by a stay time that follows a Weibull
distribution [48], used to simulate real user stay times on
webpages. Following the findings of Lorimer et al. [50], we
configure our clients so that, after each request, a client has
an 80% probability of staying in the same session or 20%
probability of starting a new session. If the client starts a new
session, they have a 50% chance of placing one session towards
an onion service, chosen randomly using our pre-computed
onion service popularity distribution and a 50% chance of
placing a session towards a randomly selected top 150 website
indexed in Tranco to ensure balanced training datasets. We also
limited the session maximum duration to 100 minutes and the
stay time to 10 minutes to reduce outliers.

Following the above methodology, we collected three dif-
ferent, yet comparable, datasets — OSTrain, OSValidate, and
OSTest. These datasets were collected between April and June
of 2023. We leverage OSTrain to train the ML classifiers
involved in SUMo’s filtering phase, we apply OSValidate to
validate the performance of the models and tune hyperparam-
eters, and use OSTest to exercise the full SUMo’s execution
pipeline. To avoid exposing the models to data they had
previously been trained with, the sets of clients, websites and
onion services visited by the clients in each dataset do not

Selected parameters

Hyperparameter - Search space Perfect filtering Imperfect filtering

epochSize {5, 10, 15, 20} 5 5
epochTolerance {1, 2,5, 10} 1 1
tsInterval {20, 100, 200, 500} 100 200
bktsPerWindow {2, 4,6, 8} 4 6
bktsOverlap {0, 1, 2, 3, 4} 2 3
A {10, 20, 60, 100} 100 60

Table III: SUMo’s matching phase hyperparameters.

overlap. Specifically, each dataset makes use of 20 clients out
of the total 60 and 16 onion services out of the total 48. The
number of sessions and requests considered in each dataset
are summarized in Table II, and Figure 5 depicts a set of
statistics about the browsing sessions composing the OSTest
dataset. (Refer to Figure 16 and Figure 17 in Appendix B
for the statistics about OSTrain and OSValidate, respectively.)
Each dataset was collected over the period of ~4 days. The
average session duration across all datasets was ~4 minutes,
with the longest session lasting just over ~73 minutes.

Dataset limitations: Given the complexity of generating real-
istic datasets, we identify several limitations in ours: i) they do
not address the multitab scenario, where each user is assumed
to browse multiple websites concurrently [39, 87]; ii) they may
not capture the full spectrum of onion services’ characteristics
found in the wild, e.g., we did not emulate onion services
serving large amounts of multimedia content or webpages that
are protected with CAPTCHAS [1], as found pervasive in
existing online drug markets like ASAP Market, AlphaBay;
and iii) they do not include onion services following protocols
other than HTTP, e.g., SSH or Bitcoin protocol. Notably,
including such features in a future version of our dataset is
only expected to improve performance, as this data would
more accurately represent the structural properties of Tor onion
services and thus be more revealing.

V. EVALUATION RESULTS

This section describes the evaluation of SUMo. We first
assess SUMo’s correlation capabilities with optimal inputs,
i.e., assuming a perfect filtering phase which can flawlessly
identify Tor client flows to onion services, and onion services
flows (§V-A). Then, we evaluate the entire SUMo pipeline
(§V-B) and compare it with related systems (§V-C). Lastly,
we evaluate the performance and scalability of SUMo (§V-D).

A. Session Matching with Perfect Filtering Phase

In this section, we leverage the ground truth about our
dataset to filter the source and destination of individual traffic
flows and evaluate the effectiveness of SUMo’s matching phase
in isolation. After pre-processing OSTest, we excluded 191
pairs of flows (i.e., sessions) from our analysis due to the
existence of invalid samples caused by corrupted packets in
our traffic collection procedure. Thus, our matching phase
considered 6855 sessions (instead of 7046, as per Table II).

The effectiveness of SUMo’s matching phase depends on
several hyperparameters that guide the performance of our
algorithm. Table III depicts the search space and the best
achieved configuration after performing hyperparameter tuning
(see §III-G). In addition, the success of the matching phase is
influenced by a threshold (¢hr) that can be tuned to adjust

Min duration=0,
Min duration=2,
Min duration=4,
Min duration=6,
Min duration=8,

6855 pairs
3529 pairs
2143 pairs
1335 pairs
816 pairs

Yo L o
Recall
Figure 6: Precision-recall curve of SUMo’s matching phase for

different threshold values and minimum session durations.

RN

Q
=

1.0

0.8

0.6

CDF

0.4

0.2

00 1 2 3 4 5 6012345678059
Session duration (minutes) Requests per session (#)

Figure 7: CDF of SUMo’s false positives according to the
duration of sessions and the number of requests per session.

the system’s sensitivity, as well as by external factors which
include the duration of a browsing session (minDuration) and
the popularity of the onion services being accessed by clients.
Below, we discuss our main findings in light of these factors.
We evaluate SUMo in a full coverage setting (see §II-E) where
the adversary can access all the flow samples. Then, we explore
how partial coverage scenarios degrade correlation.

SUMo achieves over 99.6% precision and recall when cor-
relating sessions of any duration: Figure 6 shows the varia-
tion of SUMo’s precision and recall when correlating Tor onion
service sessions with different minimum durations (markers
in each line of the plot reveal different precision/recall trade-
offs when the thr parameter is adjusted). For sessions of any
duration, SUMo can achieve a maximum precision of 99.64%,
with a recall of 99.65%. In line with our goals, this means
that there is high confidence that the flows deemed correlated
by SUMo are correct. The figure also shows that SUMo
can achieve higher precision values by limiting the minimum
session duration, reaching 100% precision and 100% recall
when setting the minimum session duration to 6 minutes. We
further discuss the impact of the choice of thr in Appendix C.

Next, we study how the session duration and number of
requests made by a client influence correlation results. We
also study various onion service factors that may change
these results, such as popularity, session concurrency, and the
characteristics of the websites served. For these, we set a
fixed threshold without limiting the minimum session duration,
achieving a precision of 99.64% and a recall of 99.65%.

Short browsing sessions generate most false-positives: Fig-
ure 7 brings further clarity to this effect, by showing the

10

Number of
concurrent
sessions

2500

2000

ey
%
=3
o

Number of sessions
1
o
o

u
=3
S

OS name
Figure 8: Session concurrency observed per onion service.

onionl 2674 1 1 0 0

5
n 0 0 [1 0 0 0 [0

onion2 1353 0 0 0 1 0o o0 0 0 1 0o o0 0 0 0

onion3 0 597 1 0 0 0 0 0 0 0 0 0 0 [[
onion4: 1 0
onion5 1 0 0 0
onion6 1 0 0 0 0
onion7 0 0 0 0 0 0
onion8 1 0 0 0 0 0 0
onion9 0 1 0 0 0 0 0o o0
onionl0 0 0 0 0 0 0 0 0 0
onionll 0 0 0 0 0 0 0 0 0 0
onionl2 0 0 0 0 0 [0 0 0 0 0

onionl3 0 0 0 0 [0 0 0 0 0 [0

=)
o
=)
=)
o
=3
o

onionl4 0

onionl5

°
°
°
°
°
°
°
°
°
°
°
°
°
°

onionl6

&
@

onionl ©
onion2 =
onion3 ©
onion4 o
onion5 ©
onioné ©
onion7 ©
onion8 o
onion9 ©
onionl0 o
onionll o
onionl2 ©
onionl3 o
onionl4 o
onionl5 o
onionl6

Figure 9: Confusion matrix of SUMo’s predictions.

distribution of false positives according to increasing session
duration time and number of requests placed in each session.
False positives occur exclusively in sessions shorter than 6
minutes, with most occurring in sessions under 2.5 minutes.
Moreover, false positives are found only in sessions with 8
or fewer requests, with most of them in sessions with less
than 3 requests. These observations highlight that the session
characteristics heavily influence the results of our correlator.

SUMo is able to successfully correlate browsing sessions
despite high levels of concurrency: Figure 8 presents the
total number of sessions established with each onion service,
also showing the number of concurrent sessions experienced by
each of the onion services. Onion services are ordered by the
number of sessions established, following the Zipf popularity
distribution described in §IV. For instance, none of the onion
services with less than 300 total sessions observed more than
3 concurrent browsing sessions at a time, while onion1 — the
most popular onion service — experienced multiple levels of
concurrency, reaching over 10 concurrent sessions. Neverthe-
less, as shown in Figure 6, SUMo was still able to correctly
correlate most sessions involving onion services experiencing
concurrency (indeed, most onion services experimented be-
tween 1 and 3 concurrent sessions at any given time).

More false positives occur when classifying sessions be-
tween popular onion services: Figure 9 shows a confusion
matrix that maps the onion services predicted by SUMo with
the actual onion services accessed by clients (in descending
order according to the onion service popularity). Each column

1.00

o —— . —
0.98 Do
7
/
So0.96 /
0 .
o 4
Fooa / . .
—— All regions, 6855 pairs
! Without europe, 1228 pairs
0.92| | — - Without america, 2880 pairs
. === Without asia, 5668 pairs
_l —— Without australia, 5837 pairs
0.90LEL
[
N ¥ o Q° o® S
Recall

Figure 10: Precision-recall curve of SUMo’s matching phase
excluding captures from different continents.

of the matrix sums up how sessions established towards a given
onion service were predicted by SUMo, while the diagonal re-
veals the number of correct predictions for each onion service.
At a glance, we can observe that popular onion services not
only account for an overall larger number of false positives,
but that they are also usually confused between one another.
For instance, sessions established toward onion1 were more
frequently erroneously classified and attributed to other onion
services showing moderate-to-high levels of concurrency.

Further examination of individual onion services char-
acteristics, detailed in Table VI in Appendix B, can shed
light on these observations. For example, onion12, which is
particularly small and uniform across pages, is shown not to
contribute to misclassifications. Other onion services, such as
onion3, proportionally produce less false positives relative to
their popularity. This may be due to their smaller size and
smaller amount of requests required to load, when compared
to other popular onion services. Future research could entail
a detailed analysis of the accesses to websites’ pages that
resulted in false-positives towards providing further insights
into how page characteristics influence correlation.

Correlation degradation in a partial coverage setting: The
results above reflect a full coverage setting (see $II-E) where
we simulate an adversary that has access to all the flow samples
collected in our dataset. In Figure 10, we briefly assess SUMo’s
correlation performance in partial coverage scenarios. For this,
we excluded all client-side flows, onion service-side flows or
both that were taken in a given continent from the correlation
process and observed the resulting precision-recall curve. Most
of the traffic included in our dataset was collected in Europe
(~80%) where several clients and the most popular onion
services are hosted (Appendix B). Since many flows were left
unmatched by removing the European sites, this scenario ex-
periences the greatest precision reduction but SUMo managed
to obtain 99.19% precision for 99.84% recall. The remaining
scenarios revealed the same trend, where a higher coverage
translates into higher precision. For instance, when removing
flows captured in Australia, SUMo still achieves ~85.18%
coverage, resulting in 99.53% precision for 99.17% recall.

B. Session Matching with Imperfect Filtering Phase

In this section, we evaluate the effectiveness of SUMo
when using an imperfect, ML-guided filtering phase (trained
and optimized using the OSTrain and OSValidate datasets,

11

1 1 ~

0.9 0.9

s 1= s 1= i

-=0.8 1AP=1.0 -=0.8 i
2 1 2 0.8{AP=0.99

po.7 90.7 3

0.95 +rrrrrrrrr 0.6 .

0.6 0.8 09 1 0.6 0.90 0.95 1 i

0.5 0.5

"0 02 04 06 0.8

Recall

(a) Source separation.

1

"0 02 04 06 08

Recall

(b) Target separation.

1

Figure 11: SUMo’s filtering phase after hyperparameter tuning.

1.00
0.99
0.98
0.97
50.96
G
5 0.95
5 0.94
o —8— Min duration=0, 6209 pairs
0.93f Min duration=2, 3241 pairs
0.92 —H8- Min duration=4, 1968 pairs
=== Min duration=6, 1231 pairs
0.91 =< Min duration=8, 757 pairs
00— » > &% 6 A & 5 o
Q- Q- Q- Q- Qr Q- Q- Q Q- Q- ~
Recall

Figure 12: Precision-recall curve when varying the minimum
session duration analysis of full pipeline execution.

respectively, as mentioned in §IV) in a full coverage setting.
After applying SUMo’s filtering phase in the following experi-
ments, only 6209 out of the 6855 truly correlated client—onion
service pairs reached the final matching phase. This happened
due to misclassifications in the pipeline’s source and target
separation stages, as we describe in the following paragraphs.

SUMo can distinguish client- from onion service-initiated
Tor traffic with high accuracy: Figure 11(a) displays the
precision-recall of SUMo’s source separator using the optimal
hyperparameters obtained from our optimization process (see
Table VII in Appendix C). The plot illustrates that the source
separator stage is successful in most instances — the average
precision score (AP) supports this result, achieving the maxi-
mum value of 1. (Without hyperparameter tuning, the classifier
achieved a worse precision-recall balance, although AP was
also equal to 1). This outcome can be credited to the distinct
behavior of Tor’s clients and onion services during startup.
Indeed, clients’ traffic associated with circuit creation gener-
ates unique traffic patterns, allowing our classifier to accurately
identify client-originated traffic, as outlined in §III-C.

SUMo effectively distinguishes between client sessions to-
wards onion services and the clearnet: Figure 11(b) depicts
the precision-recall curve of the target separator, when infer-
ring whether a client connection is aimed towards an onion
service or a clearnet website via Tor, using the selection of
parameters after optimization (see Table VII in Appendix C).
Hyperparameter tuning significantly increased this classifier’s
AP from 0.94 to 0.99, enabling it to more successfully infer
whether a client is visiting a clearnet website or an onion
service, as expected due to the factors explained in §III-C.

SUMo’s full execution pipeline remains able to deano-
nymize Tor onion service sessions with a high precision:
To assess the potential effectiveness of SUMo’s full pipeline,

N
o
5]

700\ mmm Client 175 B Client
600 { HEE Server I Server
2150
= 500 S
O @ 125
9, 0
5 00 g 100
® 300 9 75
=3 ﬁ
B 200 é 50
100 T !)
of Tmmm B . el
DeepCoFFEA OSTr+0SVal OSTest DeepCoFFEA OSTr+0SVal OSTest

(a) Flow durations (left) and the number of packets per second (right).

6000 - |
[Client received 8000 { HEE Server received
5000 [Client sent I Server sent
4000 6000
3000 4000
2000
2000
_=y B

L B B

OSTr+0SVal OSTest

DeepCoFFEA DeepCoFFEA OSTr+0SVal OSTest

(b) Number of packets at the client (left) and server-side (right).

Figure 13: SUMo’s datasets compared with DeepCoFFEA’s.

we devised an experiment to correlate sessions that exhibit
different minimum durations. Similarly to the analysis of false
positives in §V-A, we assess SUMo’s full pipeline performance
using the same threshold as in the previous section, and
re-tuned the hyperparameters of SUMo’s matching phase to
specifically account for the use of an imperfect filtering phase,
obtaining the hyperparameter configuration shown in Table III.
In these conditions, our results (shown in Figure 12 and in
greater detail in Table VIII — Appendix C) reveal that SUMo
reaches a precision of 99.5% and 89.6% recall for sessions
of any length while achieving a precision of 99.76% and a
92.07% recall for sessions lasting 6 minutes. The precision
ceases to increase for sessions longer than 6 minutes due to
noise, i.e., misclassifications, introduced by the filtering phase.

C. Comparison with the State of the Art on Flow Correlation

In this section, we compare SUMo to DeepCoFFEA, the
state-of-the-art flow correlation attack designed for Tor circuits
targetting the clearnet. DeepCoFFEA is a recent attack that has
shown good effectiveness on current Tor versions, is highly
effective (with a 93% true positive rate [62]), and is two
orders of magnitude faster than its predecessor, DeepCorr [59].
However, DeepCoFFEA and SUMo operate in distinct set-
tings; DeepCoFFEA correlates individual flow pairs from a
single website frontpage access over Tor, while SUMo targets
onion service sessions comprising multiple webpage requests.
Despite these differences, we aim to estimate DeepCoFFEA’s
effectiveness in correlating onion service traffic. Unfortunately,
we could not test SUMo with DeepCoFFEA’s dataset as it lacks
the absolute packet times feature that SUMo requires.

Adapting DeepCoFFEA to onion service traffic: DeepCoF-
FEA, a deep learning-based flow correlation attack, utilizes
packet sizes and timings from several hundred flow packets at
circuit endpoints to train a correlation model. This attack sim-
plifies the correlation process by creating lower-dimensional
flow embeddings and reduces false positives through an am-
plification strategy that divides flows into multiple windows
for majority voting. DeepCoFFEA’s dataset was acquired by
capturing Tor flows to top Alexa websites using probes on a
Tor client and a proxy between the exit relay and the server.
Despite the original dataset reportedly containing around
45,000 flow pairs, we could only retrieve 29,576 pairs from
the public source. Packet transmissions to top Alexa websites
usually involve higher packet-per-second rates than onion
service visits (see Figure 13(a)). The lower packet-per-second
rates in OSTrain and OSValidate datasets required careful
tuning of DeepCoFFEA’s window splitting parameters. Other
dataset differences, like total packet numbers received/sent on

10 0.10
—— setup-1_g
% 0.8 0.08 setup-1_|
[
**** setup-2_g
Los S 0.06 —
=] s« | setup-2_|
= @
Q04 — setup-1.g © 0.0a
) setup-1_| o
o024 setup-2_g 0021 A
***** setup-2_| AN
0.0 0.00
00 02 04 06 08 10 00 02 04 06 08 1.0
False positive rate Recall

(a) The ROC curve. (b) The PR curve.

Figure 14: DeepCoFFEA on OS7est, trained on OSTrain and
OSValidate, w/ two sets of parameters & global/local threshold.

the client/server side, are illustrated in Figure 13(b). We train
DeepCoFFEA on OSTrain and OSValidate until convergence
(when training loss is at 0.002 following the original paper)
and evaluate its performance on OSTest.

DeepCoFFEA’s performance drops on onion service flow
correlation: Despite our best effort to tune the hyperpa-
rameters, DeepCoFFEA’s performance is relatively modest.
Figure 14 shows the ROC curve and the precision-recall curve
exhibited by DeepCoFFEA, where the solid and dashed lines
represent models with two different parameter settings — the
suffix g and [indicates the global and local thresholding
techniques used by the authors to evaluate the final correlation
matrix (the details of these setups can be seen in Appendix C).
These results suggest that the DeepCoFFEA attack is not
effective when correlating onion service sessions. We found
out that the model struggled to have consistent votes across
windows. This could be due to the high variance nature of the
data transmission across the entire onion session.

D. Correlation Performance and Efficiency

In this section, we assess SUMo’s performance and scal-
ability by measuring the execution time and computational
resources required to correlate onion service sessions. Then,
we compare SUMo’s performance to that of DeepCoFFEA.
We performed our benchmarks in a machine configured with
an Intel Xeon 4214 CPU, 252GB of RAM, and an NVidia A10
24GB GPU, and report an average of 10 samples.

Table IV summarizes our results for all stages of SUMo’s
execution pipeline. The filtering phase is executed in CPU,
while the matching phase benefits of a dedicated GPU. The
source separation stage took 44.7ms to classify a batch of
21,856 flows (=2 us/flow), whereas the target separation took
35ms to classify a batch of 14,968 flows (/2.3 us/flow). The

Training time* Inference time* GPU Mem.

Phase Stage

(# flows) (# flows) (# flow pairs)
Filteri S S " 4.25+£0.85s 44.74+2.29ms
utering ource Separation (38 004) (21 856)
Tareet Separatio 1.69+£0.29s 35.0+4.29ms
arget separation (23351) (14 968)
. . . 32.61+0.13ms 450MB
Matching Session Correlation (5000 pairs) (1101 555)

*Latencies are presented as average-tstandard deviation (10 samples)

Table IV: SUMo’s performance in each pipeline stage.

sizes of the batches correspond to the number of flows in
OSTest when undergoing filtering. The matching phase relies
on a single stage only — the correlator — and can classify a
batch of 5000 flow pairs in 32.6 ms (=6.52 us/flow pair).

We evaluated the time needed for SUMo and DeepCoFFEA
to train their classifiers and to execute correlation attempts (i.e.,
test) on their respective datasets. Unlike DeepCoFFEA, which
requires the training of deep learning models, SUMo only
requires training the XGBoost classifiers used in its filtering
phase. As depicted in Table IV, SUMo’s source and target
separation steps training is considerably faster, taking about
6s compared to over a day for DeepCoFFEA. Furthermore,
SUMo processes flows and flow pairs in batches, resulting in
a latency of 4 us per flow in the filtering phase, and 6.52 us
per flow pair in the matching phase. Conversely, DeepCoFFEA
requires around 0.6 ms to correlate a single flow pair when the
flow is divided into 11 windows.

To gauge the correlation throughput of the two approaches,
we saturate each correlator by increasing the size of each batch
of flow pairs that must be correlated. Figure 15 depicts the
latency/throughput curves for DeepCoFFEA and SUMo. Given
as input 5000 flow pairs, the DeepCoFFEA GPU kernel took
3.05s to correlate them, yielding a throughput of 1639 flow
pairs/s. DeepCoFFEA implementation shows a worsening in
performance as the input batch increases over 5000 flow pairs.
As for SUMo, it can process 5000 pairs in 32.6 ms yielding
a peak throughput of ~153,000 pairs/s. SUMo outperforms
DeepCoFFEA by approximately two orders of magnitude, be-
ing considerably faster than the best-performing deep learning-
based classifier today. Our implementation does not show the
degradation in throughput presented by DeepCoFFEA, and
we were able to increase the input batch up to a maximum
of 1,101,555 flow pairs. A downside is that SUMo memory
usage increases with the number of flow pairs and we make
use of a limited scratchpad memory in the GPU to improve
the lookup of an existing correlation (see Equation 2). How-
ever, while DeepCoFFEA requires up to ~2100 MB of GPU
memory regardless of the number of pairs (we tested up 60,000
pairs), SUMo consumed ~450 MB of GPU memory to process
1,101,555 flow pairs, hence, we claim that SUMo is also more
memory-efficient than DeepCoFFEA in most cases.

E. Feasibility of Flow Correlation Attacks

While the threat of large scale attacks grows as more ISPs
intercept Tor traffic, even a small scale collusion among them
poses significant risks. The reason is the inherent skewness of
the Tor network towards a few ISPs and countries [28, 61].
To estimate the share of Tor onion service traffic potentially
vulnerable to SUMo attacks, we conducted a study of Tor

13

—k— DeepCoFFEA —¥— SUMo

Latency of batch (s)

10° 10t 102

Throughput (1000 pairs/s)
Figure 15: Throughput/latency curves for tested correlators.

guard probabilities across countries and Autonomous Systems
(ASes). Regarding countries, 89.13% of Tor guard nodes are
located in 10 countries, with Germany accounting for 30%, and
the US alone accounting for 24.75%. As for ASes, the 6 ASes
with greater guard relay coverage, if colluding, could monitor
almost 50% of all guard node traffic. Moreover, if the top 20
ASes colluded, they could monitor 75% of the guard traffic.
Given that governments have authority over ISPs within their
borders, the risk of mandated traffic interception is realistic.

To further estimate the share of onion service circuits in
which both ends are observable by the same country or AS,
we randomly established 40,000 sessions between Tor onion
services and clients from varied regions. We found that the
probability of both guard nodes being in the same country is
15.65%. Germany alone has a 10.15% probability, followed
by the US and France with 3.11% and 1.14%. Moreover, if
Germany, the US, and France collude, they have a 36.84%
probability of capturing both ends. With the top 10 countries
colluding, they could deanonymize 78.34% of the circuits. As
for ASes, the probability of both guard nodes being in the
same AS is 7.63%. The top 10 ASes when colluding, have
a 33.68% probability of capturing both ends of the circuit.
Comprehensive findings are detailed in Appendix D.

VI. ATTACK COUNTERMEASURES

Given that SUMo may be leveraged for targeted surveil-
lance against Tor users [54], we propose several countermea-
sures that can limit the effectiveness of our attack.

1. Obfuscation of Tor flows: Traffic obfuscators [9, 22, 80]
that aim to prevent the detection of Tor usage can help users
defending against SUMo. Previous studies [62, 84] reveal
that obfuscation mechanisms like obfs4 [5] can hinder the
precision of correlation attacks on Tor; e.g., Tian et. al. [79]
showed that DeepCorr’s true positive rate decreased from 82%
to 60% by applying obfs4-based perturbations. We expect
SUMo’s effectiveness to suffer from a similar degradation.

2. Generation of concurrent multitab clearnet requests:
To find correlated sessions, SUMo depends on the accurate
separation of individual client flows targeting Tor onion ser-
vices. To make this task harder for an adversary, Tor users
can browse dummy websites concurrently whilst accessing an
onion service. Separating overlapping webpage requests is cur-
rently not supported by SUMo and remains an open problem
that has inspired various research works [29, 39, 87, 90].

3. Generation of concurrent onion service requests: A
potential way to deter SUMo’s correlation ability is to increase
the concurrency of traffic exchanged by each onion service
(§V-A). One server-side countermeasure that exploits this

weakness is to keep the connection between the onion service
and its guard node busy by generating spurious traffic from
dummy Tor clients controlled by the onion service provider.

4. Ensuring diverse geographic locations for client and
onion service guard nodes: Circuits toward onion services
may become especially susceptible to traffic correlation if both
a client’s and onion service’s guard nodes are located within
the same geographical region. An interesting direction for fu-
ture work would be to explore novel mechanisms for ensuring
that both guard nodes are situated in different geographical
locations, thus making it more challenging for an adversary to
observe both ends of a connection towards an onion service.

VII. ETHICAL CONSIDERATIONS

Responsible data collection: Our experiments follow the Tor
research safety board recommendations [77] and do not jeop-
ardize the safety of real users. We correlate our own traffic,
i.e. we only analyze browsing sessions we have generated.
We also conceal our .onion addresses: we do not publicly
distribute the addresses for our onion services, so that real Tor
users cannot accidentally access our onion services during the
limited timeframe of our data collection procedure.

Responsible disclosure: We disclosed an earlier version of
the attack and countermeasures proposed in this paper to the
Tor development team. The team provided technical insights
regarding these countermeasures which align with the long-
term Tor development plan against such attacks.

VIII. RELATED WORK

Attacks on onion services: Previous work has relied on ex-
ploiting the Tor protocol [16, 41, 64], content and configuration
leaks [52], or clock-skew changes [55, 89] to deanonymize Tor
onion services. Kwon et al. [44] introduced circuit fingerprint-
ing and website fingerprinting attacks on Tor onion services.
However, the adversary needs to enumerate and fingerprint
the space of all existing onion services, which is currently
inhibited by the latest Tor onion service rendezvous protocol
specification [76] and other defense proposals [81].

End-to-end traffic correlation: End-to-end flow correlation
attacks, executed by adversaries who observe a fraction of
flows entering and exiting the Tor network, are a well-known
threat to the anonymity provided by Tor [12, 56, 59, 62].
Previous work has studied the vulnerability of Tor to passive
adversaries that can establish themselves in vantage points like
ASes [24] or Internet exchange points [38, 57]. It has also
been shown that malicious actors could actively increase their
visibility on Tor connections, e.g., by controlling increasing
amounts of Tor relays [85, 86] or manipulating routing infor-
mation [38, 75]. A related stream of research aims to increase
the robustness to correlation attacks by avoiding malicious
ASes [4, 11, 24, 60, 71, 74] or geographical regions [42, 47].

Watermarking: Another well-known class of correlation at-
tacks relies on the active embedding of identifiable signatures,
i.e., watermarks, on traffic flows, allowing adversaries to confi-
dently link the endpoints of a given connection. When applied
to Tor, popular watermarking schemes introduce controlled
delays to specific packets [33, 34, 70]. Other schemes de-
anonymize onion services by leveraging vulnerabilities in the

14

Tor’s congestion control mechanisms based on manipulating
SENDME cells to introduce time gaps into flows [35, 36].
Differently from SUMo, however, all these attacks require the
active manipulation of traffic.

Fingerprinting attacks: Tor does not significantly manipulate
the shape of traffic patterns, which means that packet timing
and volume characteristics of web pages are closely preserved.
This enables an adversary to launch fingerprinting attacks in
order to identify which webpage [31, 32, 39, 73, 83, 90]
or onion service [44, 63, 66] is being accessed by a client.
Similarly, circuit fingerprinting techniques can be used to
distinguish client activity from onion service activity [44].

IX. CONCLUSION

This paper presented SUMo, a traffic correlation attack that
allows the end-to-end deanonymization of Tor onion service
traffic. We demonstrated this attack in a controlled environment
by designing and implementing a prototype. Our evaluation
reveals that SUMo’s two-phased architecture would allow a
multi-ISP adversary to process high volumes of traffic and
launch attacks against onion services which can, in a specific
set of conditions, lead to the deanonymization of Tor onion
services with high precision and recall.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous
reviewers for their insightful comments. This work was
supported by the Fundacdo para a Ciéncia e Tecnologia
(FCT) under grants UIDB/50021/2020, UIDB/00408/2020,
UIDP/00408/2020, CMU/TIC/0044/2021, LA/P/0063/2020,
and PRT/BD/154197/2022, by IAPMEI under grant
C6632206063-00466847 (SmartRetail), and by NSERC
under grant RGPIN-2023-03304.

REFERENCES
(1]

(2]
(3]

“Endgame ddos filter,” https://github.com/onionltd/EndGame, accessed:
2023-02-06.

“SUMo repository,” https://github.com/danielalopes/sumo.

G. Acar, M. Juarez, and individual contributors, “tor-browser-selenium
- tor browser automation with selenium,” https://github.com/webfp/tor-
browser-selenium, 2020, accessed: 2021-06-01.

M. Akhoondi, C. Yu, and H. V. Madhyastha, “Lastor: A low-latency
as-aware tor client,” in /EEE Security and Privacy, 2012.

Y. Angel, “Obfsproxy4 specification,” https://github.com/Yawning/obfs4/
blob/master/doc/obfs4-spec.txt, 2019, accessed: 2023-02-06.

D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi, C. Wress-
negger, L. Cavallaro, and K. Rieck, “Dos and don’ts of machine learning
in computer security,” in USENIX Security, 2022.

S. Axelsson, “The base-rate fallacy and the difficulty of intrusion
detection,” ACM Trans. Inf. Syst. Secur., 2000.

F. Barr-Smith and J. Wright, “Phishing with a darknet: Imitation of onion
services,” in APWG Symposium on Electronic Crime Research (eCrime),
2020.

D. Barradas, N. Santos, L. Rodrigues, and V. Nunes, “Poking a hole
in the wall: Efficient censorship-resistant internet communications by
parasitizing on webrtc,” in ACM CCS, 2020.

D. Barradas, N. Santos, and L. Rodrigues, “Effective detection of
multimedia protocol tunneling using machine learning,” in USENIX
Security, 2018.

A. Barton and M. Wright, “Denasa: Destination-naive as-awareness in
anonymous communications,” PoPETS, 2016.

L. Basyoni, N. Fetais, A. Erbad, A. Mohamed, and M. Guizani, “Traffic
analysis attacks on tor: A survey,” in IEEE ICloT, 2020.

BBC News, “BBC News launches ’dark web’ Tor mirror,” https://www.
bbc.com/news/technology-50150981, accessed: 2023-02-06.

(4]
(5]
(6]

(7]
(8]

(91

[10]

[11]
[12]

[13]

https://github.com/onionltd/EndGame
https://github.com/danielaLopes/sumo
https://github.com/webfp/tor-browser-selenium
https://github.com/webfp/tor-browser-selenium
https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://www.bbc.com/news/technology-50150981
https://www.bbc.com/news/technology-50150981

[14]

[15]

[16]

(17]

[18]
[19]

[20]

[21]

[22]

[23]
[24]
[25]
[26]
[27]

(28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” Advances in Neural Information Processing
Systems, 2011.

A. Biryukov, 1. Pustogarov, F. Thill, and R.-P. Weinmann, “Content and
popularity analysis of tor hidden services,” in IEEE ICDCS Workshops,
2014.

A. Biryukov, I. Pustogarov, and R.-P. Weinmann, “Trawling for tor
hidden services: Detection, measurement, deanonymization,” in IEEE
Security and Privacy, 2013.

L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and
zipf-like distributions: evidence and implications,” in IEEE INFOCOM,
1999.

T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in ACM SIGKDD, 2016.

G. Cherubin, J. Hayes, and M. Juarez, “Website fingerprinting defenses
at the application layer,” in PoPETS, 2017.

V. Curtis and C. Sanches, “An efficient solution to the subset-sum prob-
lem on gpu,” Concurrency and Computation: Practice and Experience,
2016.

D. M. Diab, B. AsSadhan, H. Binsalleeh, S. Lambotharan, K. G.
Kyriakopoulos, and I. Ghafir, “Anomaly detection using dynamic time
warping,” in /EEE CSE and EUC, 2019.

R. Dingledine, “Obfsproxy: the next step in the censorship arms race,”
https://blog.torproject.org/blog/obfsproxy-next- step-censorship-arms-
race, 2012, accessed: 2023-02-06.

R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in USENIX Security, 2004.

M. Edman and P. Syverson, “As-awareness in tor path selection,” in ACM
CCS, 2009.

P. 1. Frazier, “A tutorial on bayesian optimization,” arXiv preprint
arXiv:1807.02811, 2018.

Freedom of the Press Foundation, “SecureDrop,” https://securedrop.org/,
accessed: 2023-02-06.

M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1990.

G. K. Gegenhuber, M. Maier, F. Holzbauer, W. Mayer, G. Merzdovnik,
E. Weippl, and J. Ullrich, “An extended view on measuring tor as-level
adversaries,” Comput. Secur., 2023.

J. Gong and T. Wang, “Zero-delay lightweight defenses against website
fingerprinting,” in USENIX Security, 2020.

A. Gurunarayanan, A. Agrawal, A. Bhatia, and D. K. Vishwakarma,
“Improving the performance of machine learning algorithms for tor
detection,” in ICOIN, 2021.

J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable website
fingerprinting technique.” in USENIX Security, 2016.

D. Herrmann, R. Wendolsky, and H. Federrath, “Website fingerprinting:
attacking popular privacy enhancing technologies with the multinomial
naive-bayes classifier,” in ACM CCSW, 2009.

A. Houmansadr and N. Borisov, “Swirl: A scalable watermark to detect
correlated network flows.” 2011.

A. Houmansadr, N. Kiyavash, and N. Borisov, “Rainbow: A robust and
invisible non-blind watermark for network flows,” 2009.

A. lacovazzi, D. Frassinelli, and Y. Elovici, “The duster attack: Tor onion
service attribution based on flow watermarking with track hiding,” in
ACM RAID, 2019.

A. Tacovazzi, S. Sarda, and Y. Elovici, “Inflow: Inverse network flow
watermarking for detecting hidden servers,” in IEEE INFOCOM, 2018.
R. Jansen, M. Traudt, and N. Hopper, “Privacy-preserving dynamic
learning of tor network traffic,” in ACM CCS, 2018.

A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson, “Users get
routed: Traffic correlation on tor by realistic adversaries,” in ACM CCS,
2013.

M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt, “A critical
evaluation of website fingerprinting attacks,” in ACM CCS, 2014.

G. Kadianakis, T. Polyzos, M. Perry, and K. Chatzikokolakis, “Tor
circuit fingerprinting defenses using adaptive padding,” arXiv preprint
arXiv:2103.03831, 2021.

I. Karunanayake, N. Ahmed, R. Malaney, R. Islam, and S. K. Jha, “De-
anonymisation attacks on tor: A survey,” IEEE Communications Surveys
& Tutorials, 2021.

K. Kohls, K. Jansen, D. Rupprecht, T. Holz, and C. Popper, “On the
challenges of geographical avoidance for tor,” in NDSS, 2019.

J. Kornblum, H. Grohne, and T. OI, “ssdeep project: ssdeep - fuzzy hash-
ing program,” https://ssdeep-project.github.io/ssdeep/index.html, 2017,
accessed: 2023-06-13.

15

[44]

[45]

[46]

(471
(48]
[49]

[50]

[51]
[52]

[53]

[54]
[55]
[56]
(571
[58]
[59]
[60]
[61]

[62]

[63]

[64]
[65]

[66]

[67]

[68]

[69]
[70]
(711
[72]

[73]

[74]1

[75]

A. Kwon, M. AlSabah, D. Lazar, M. Dacier, and S. Devadas, “Circuit
fingerprinting attacks: Passive deanonymization of tor hidden services,”
in USENIX Security, 2015.

J. C. Lagarias and A. M. Odlyzko, “Solving low-density subset sum
problems,” Journal of ACM, 1985.

B. N. Levine, M. K. Reiter, C. Wang, and M. Wright, “Timing attacks
in low-latency mix systems,” in International Conference on Financial
Cryptography, 2004.

Z. Li, S. Herwig, and D. Levin, “Detor: Provably avoiding geographic
regions in tor,” in USENIX Security, 2017.

C. Liu, R. W. White, and S. Dumais, “Understanding web browsing
behaviors through weibull analysis of dwell time,” in ACM SIGIR, 2010.
W. Liu, X. Liu, X. Di, and H. Qi, “A novel network intrusion detection
algorithm based on fast fourier transformation,” in /A7, 2019.

A. H. Lorimer, L. Tulloch, C. Bocovich, and 1. Goldberg, “Oustralop-
ithecus: Overt user simulation for censorship circumvention,” in ACM
WPES, 2021.

N. Mathewson, “New release: Tor 0.4.1.5,” https://blog.torproject.org/
new-release-tor-0415/, accessed: 2023-06-27.

S. Matic, P. Kotzias, and J. Caballero, “Caronte: Detecting location leaks
for deanonymizing tor hidden services,” in ACM CCS, 2015.

S. E. McGregor, P. Charters, T. Holliday, and F. Roesner, “Investigating
the computer security practices and needs of journalists,” in USENIX
Security, 2015.

M. Milanovic, “Human rights treaties and foreign surveillance: Privacy
in the digital age,” Harvard International Law Journal, 2015.

S. J. Murdoch, “Hot or not: Revealing hidden services by their clock
skew,” in ACM CCS, 2006.

S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of tor,” in I[EEE
Security and Privacy, 2005.

S. J. Murdoch and P. Zielifiski, “Sampled traffic analysis by internet-
exchange-level adversaries,” in PoOPETS Workshop, 2007.

B. Muthukadan, “Selenium python bindings,” https://selenium-python.
readthedocs.io/index.html, 2020, accessed: 2023-06-19.

M. Nasr, A. Bahramali, and A. Houmansadr, “Deepcorr: Strong flow
correlation attacks on tor using deep learning,” in ACM CCS, 2018.

R. Nithyanand, O. Starov, A. Zair, P. Gill, and M. Schapira, “Measuring
and mitigating as-level adversaries against tor,” in NDSS, 2016.

——, “Measuring and mitigating as-level adversaries against tor,” NDSS,
2017.

S. E. Oh, T. Yang, N. Mathews, J. K. Holland, M. S. Rahman, N. Hopper,
and M. Wright, “Deepcoffea: Improved flow correlation attacks on tor
via metric learning and amplification,” in IEEE Security and Privacy,
2022.

R. Overdorf, M. Juarez, G. Acar, R. Greenstadt, and C. Diaz, “How
unique is your .onion?: An analysis of the fingerprintability of tor onion
services,” in ACM CCS, 2017.

L. Overlier and P. Syverson, “Locating hidden servers,” in I[EEE Security
and Privacy, 2006.

G. Owen and N. Savage, “Empirical analysis of tor hidden services,”
IET Information Security, 2016.

A. Panchenko, A. Mitseva, M. Henze, F. Lanze, K. Wehrle, and T. En-
gel, “Analysis of fingerprinting techniques for tor hidden services,” in
Workshop on Privacy in the Electronic Society, 2017.

F. Platzer, M. Schifer, and M. Steinebach, “Critical traffic analysis on
the tor network,” in ACM ARES, 2020.

V. Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczynski, and
W. Joosen, “Tranco: A research-oriented top sites ranking hardened
against manipulation,” 2019.

T. T. Project, “Stem docs,” https://stem.torproject.org/, accessed: 2023-
10-19.

F. Rezaei and A. Houmansadr, “Finn: Fingerprinting network flows using
neural networks,” in ACM ACSAC, 2021.

F. Rochet, R. Wails, A. Johnson, P. Mittal, and O. Pereira, “Claps: Client-
location-aware path selection in tor,” in ACM CCS, 2020.

V. Shmatikov and M.-H. Wang, “Timing analysis in low-latency mix
networks: Attacks and defenses,” in ESORICS, 2006.

P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep fingerprinting:
Undermining website fingerprinting defenses with deep learning,” in
ACM CCS, 2018.

Y. Sun, A. Edmundson, N. Feamster, M. Chiang, and P. Mittal, “Counter-
raptor: Safeguarding tor against active routing attacks,” in IEEE Security
and Privacy, 2017.

Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford, M. Chiang, and
P. Mittal, “RAPTOR: Routing attacks on privacy in tor,” in USENIX

https://blog.torproject.org/blog/obfsproxy-next-step-censorship-arms-race
https://blog.torproject.org/blog/obfsproxy-next-step-censorship-arms-race
https://securedrop.org/
https://ssdeep-project.github.io/ssdeep/index.html
https://blog.torproject.org/new-release-tor-0415/
https://blog.torproject.org/new-release-tor-0415/
https://selenium-python.readthedocs.io/index.html
https://selenium-python.readthedocs.io/index.html
https://stem.torproject.org/

Security, 2015.

[76] The Tor Project, “Tor Rendezvous Specification - Version 3,” https:
//gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt, accessed: 2023-
02-06.

[777 ——, “Research safety board,”
safetyboard/, 2016, accessed: 2023-02-06.

[78] J. A. Thompson and K. Schlachter, “An introduction to the opencl
programming model,” 2012, accessed: 2023-06-27.

[79] J. Tian, G. Gou, Y. Guan, W. Xia, G. Xiong, and C. Liu, “Universal
perturbation for flow correlation attack on tor,” in IEEE IPCCC, 2021.

[80] Tor Project, “Pluggable Transports,” https://gitweb.torproject.org/torspec.
git/tree/pt-spec.txt, 2012, accessed: 2023-02-06.

[81] C. Wang, Z. Ling, W. Wu, Q. Chen, M. Yang, and X. Fu, “Large-scale
evaluation of malicious tor hidden service directory discovery,” in IEEE
INFOCOM, 2022.

[82] T. Wang and I. Goldberg, “Improved website fingerprinting on tor,” in
ACM WPES, 2013.

, “On realistically attacking tor with website fingerprinting,” in
PoPETS, 2016.

[84] X. Wang, Z. Li, W. Huang, M. Wang, J. Shi, and Y. Yang, “Towards
comprehensive analysis of tor hidden service access behavior identifica-
tion under obfs4 scenario,” in ACM ICEA, 2022.

[85] P. Winter, R. Kéwer, M. Mulazzani, M. Huber, S. Schrittwieser, S. Lind-
skog, and E. Weippl, “Spoiled onions: Exposing malicious tor exit
relays,” in PoPETS, 2014.

[86] M. K. Wright, M. Adler, B. N. Levine, and C. Shields, “An analysis of
the degradation of anonymous protocols,” in NDSS, 2002.

[87] Y. Xu, T. Wang, Q. Li, Q. Gong, Y. Chen, and Y. Jiang, “A multi-tab
website fingerprinting attack,” in ACM ACSAC, 2018.

[88] C. Yoon, K. Kim, Y. Kim, S. Shin, and S. Son, “Doppelgéngers on the
dark web: A large-scale assessment on phishing hidden web services,”
in ACM WWW, 2019.

[89] S. Zander and S. J. Murdoch, “An improved clock-skew measurement
technique for revealing hidden services.” in USENIX Security, 2008.

[90] Z. Zhuo, Y. Zhang, Z.-l. Zhang, X. Zhang, and J. Zhang, “Website
fingerprinting attack on anonymity networks based on profile hidden
markov model,” IEEE Trans. Inf. Forensics Secur., 2018.

https://research.torproject.org/

[83]

APPENDIX
A. The Sliding Subset Sum Algorithm

Our algorithm pre-processes the flows first, and then ap-
plies the subset sum operation, as described next.

Flow pre-processing: For each flow pair — client-side flow and
onion service-side flow — Algorithm 1 starts by dividing packet
count features into equal time units named buckets. A bucket
groups all packets sent or received during a time unit. tsinterval
dictates a trade-off between packet temporal precision and
sensitivity to latency and delays in the network.Each window
in the sliding window technique accounts for multiple buck-
ets, designated by bktsPerWindow. bktsPerWindow is a fixed
number of buckets included when analyzing each window.
A larger bktsPerWindow also loses temporal precision but is
more tolerant of delays. The window moves with a step of
bktsOverlap buckets. A smaller bktsOverlap leads to trying
more combinations of buckets in each flow pair.

Applying subset sum: For each window, we apply our adap-
tion of a solution for the subset sum problem (line 14 of Al-
gorithm 1). We analyze a pair of a client flow, ¢ and an onion
service flow, of, by applying a sliding window technique that
tests several possible smaller combinations of packets of those
two flows within each window. The SUBSETSUM function
takes an additional parameter A that defines how inaccurate
the volumetric match can be. Due to packet delays, reordering
and additional protocol communications, the packet volumes
on ¢ and of are not expected to match exactly. We changed the
baseline subset sum, which assumes an exact match, to accept

Algorithm 1 Sliding subset sum algorithm

1: Input
2: Cr
3: o
4: Output
5: finalScore

6: Prepare

7: tsInterval, bktsPerWindow, bktsOverlap, A, thr,

8: bktigx < 0, wigx < 0

9: function SLIDINGSUBSETSUM(cy, of, bktsOverlap, bkts PerWindow, A)

client flow
onion service flow

10: Chkiss Obkis $— BUCKETIZEFLOWS ¢y, of, tsInterval)
11: while bktisx < LEN(cf) — bktsPerWindow do
12: cy < cflbktia : bktiay + bktsPerWindow)
13: oy < of[bktia : bktiay + bktsPerWindow)
14: scores[wig] <— SUBSETSUM(cy, Oy, A)

15: bktix < bktix + bktsOverlap

16: Wigx < Wigx + 1

17: end while

18: SCOREPOSTPROCESSING(scores)

19: finalScore < suM(scores)/w;qq

20: return finalScore

21: end function

the A parameter. A is the difference that we tolerate between
the sum of a subset of packets sent by the onion service and
the total packets received by the client in a given window. We
denote wigx as the index of the current window being processed
and bkt;qx as the index of the first bucket of the current
window. Each window will have its own score, scores|[wigy]
based on the output of SUBSETSUM. The overall similarity
score between the client and the onion service flow, finalScore,
is the average of all the window scores. The sliding subset
sum applied to a given flow pair i) computes the similarity
scores for each window and ii) post-processes these scores
before it generates the final flow pair classification verdict
finalScore. SCOREPOSTPROCESSING consists of enhancing
the weight of positive and negative scores based on the number
of consecutive windows with the same score. Respectively,
these steps match the invocation of functions SUBSETSUM
(line 14) and SCOREPOSTPROCESSING (line 18).

Flow pairs scoring: Equation 4 explores the maximum and
minimum values for the flow pairs’ scores and the parameters
in which they depend. W represents the number of windows
in a pair of flows, and S,,,, represents the maximum score,
positive or negative, that SUMo can attribute to a pair of flows.

WwW-—-1

1+ K. k

Smaz:| E T‘:‘1+§(S+1)‘ (4)
1=0

B. Testbed Details

Locations of Tor clients and onion services: Table V lists
the locations of each Tor client and onion service used in our
experiments (we only present the list for dataset OS7est, but
OSTrain and OSValidate encompass the remaining locations
not depicted here). We hosted client and onion service nodes
across several Google Cloud Platform data centers in different
locations, including the Americas, Europe, Asia and Australia.

Characteristics of the websites served by onion services:
Table VI details the characteristics of the websites being served
by each onion service included in the OSTest dataset. The
selected onion services focus on different website categories
and cover a vast range of requests per page, as well as resource
and page sizes, that vary substantially within and across onion
services. These are expected to be differentiating factors in the
traffic patterns produced when clients access onion services.

https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt
https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt
https://research.torproject.org/safetyboard/
https://research.torproject.org/safetyboard/
https://gitweb.torproject.org/torspec.git/tree/pt-spec.txt
https://gitweb.torproject.org/torspec.git/tree/pt-spec.txt

Nickname Google Cloud Zone | Nickname Google Cloud Zone
clientl europe-west1-b onionl europe-west4-a
client2 europe-westl-b onion2 europe-westl-b
client3 europe-west1-b onion3 us-west2-a
client4 europe-west1-b onion4 europe-west2-c
client5 australia-southeastl-a | onion5 us-west2-a
client6 australia-southeastl-a | onion6 us-west2-a
client7 australia-southeastl-a | onion7 us-west2-a
client8 australia-southeast1-a | onion8 europe-west2-c
client9 us-west4-a onion9 europe-west2-c
client10 us-west4-a onionl10 europe-west1-b
clientl1 us-west4-a onionl1 europe-west2-c
client12 us-west4-a onionl12 europe-west4-a
client13 asia-eastl-a onionl3 europe-west1-b
client14 asia-eastl-a onionl14 europe-west1-b
clientl5 asia-eastl-a onionl5 europe-west4-a
client16 asia-eastl-a onionl6 europe-west4-a
clientl7 southamerica-east1-a

client18 southamerica-east1-a

client19 southamerica-east1-a

client20 southamerica-east1-a

Table V: Locations of the Tor nodes used in OSTest.
1.0

0.0

,19 A NN ,.19 ,,)Q [N \//\(,)0 N 0/\00Q

540
Session duration Requests per Sessions per
(minutes) session (#) onion service (#)

Figure 16: Statistics for the OSTrain dataset.

Breakdown of resulting onion service session’ characteris-
tics: Figures 16 and 17 show the CDF of the session duration
in minutes, number of requests per session, and sessions
per onion service for the dataset OSTrain and OSValidate,
respectively. With these, we verify that our sessions are highly
variable and reflect multiple user browsing scenarios. In all
the datasets, we observe that most sessions are shorter than
25 minutes and 20 requests, but they can almost double that
for a few instances. We see that most onion service services
received very few sessions compared to the two most popular
onion services, achieving a popularity skewness that resembles
real-world Internet websites’ popularities.

C. SUMo’s Evaluation Details

Threshold’s impact on SUMo’s metrics and fluctuations in
precision-recall curves: As shown in Section III-F, SUMo’s
decision process for determining whether two sessions are
correlated is based on two heuristics: (i) ensuring that the sim-
ilarity score between two sessions is above the threshold value
thr, and (ii) picking the onion service flow with the greatest
similarity score with respect to the client flow under analysis.
We reveal the rationale for this decision by first analyzing the
performance of SUMo when using the first heuristic, and then
showing the benefits of combining both heuristics. Figure 18
shows how SUMo’s precision and recall vary with different
threshold values, when we regard the threshold as the sole
criterion for considering a pair of flows correlated. The figure
reveals that while using our first heuristic, SUMo’s matching
phase can achieve high precision and recall when correlating
sessions established towards onion services. In this setting, for

17

0.0

’\9 o O

Session duration

(minutes)

Q

ISIN]

v

Requests per
session (#)

,,)Q » O

NS IS IS

L L
KOPSFSEN
Sessions per
onion service (#)

Figure 17: Statistics for the OSValidate dataset.

Onion Category Pages Page Resource Page
service (#) Requests (#) Size (kB) Size (kB)
onionl Drugs 229 103 £ 42 45535 £ 112525 4704642 + 1883752
onion2 Hacking 21 28+ 0 42164 £ 47869 1180590 £+ 0
onion3 Drugs 47 7+3 37369 + 27110 245684 + 139141
onion4 Drugs 5306 154 £ 36 41899 + 103513 6464166 + 1384211
onion5 Drugs 54 4+ 2 192142 £ 649043 753197 £ 1173497
onion6 Credit cards 15 18 £ 6 57215 £ 135621 1029874 + 327433
onion7 Hacking 5 42 + 14 37552 4 49834 1569686 £ 406366
onion8 Credit cards 4 51+0 34349 + 97612 1751813 £ 0
onion9 Vendor scripts 5 11 &0 234072 + 268635 2574795 £ 0
onion10 Hacking 7 25+ 6 33482 + 42486 846602 £ 133850
onionll Credit cards 3 342 5941 + 4023 17823 + 21221
onionl12 Chat rooms 13 1+£0 196 £ 0 196 £ 0
onionl3 Credit cards 1 23+0 52996 + 70585 1218916 + 0
onionl4 Credit cards 13 4+5 64688 + 69514 243825 £ 347599
onionl5 Credit cards 38 22 +£ 10 19309 + 31307 428354 + 17884
onionl6 Cryptocurrency 11 8§£3 23074 + 34896 178303 + 168291

Table VI: Characteristics of websites served by onion service.

sessions of any duration, SUMo can achieve 100% recall for
99.09% precision. However, for a setting where both heuristics
are applied, and for sessions of any duration, SUMo achieves
99.65% recall for 99.64% precision, as shown in Figure 6.
While trading off a slightly decreased recall for increased
precision, we find this is useful in the context of this work,
where a reduced amount of false positives is a key concern for
the effectiveness of SUMo.

Regarding the fluctuations in the precision for lower values
of recall (generally, we would expect the precision to lower
as the recall increases, which is not the obvious trend in
SUMo’s plots), these are less pronounced when using the first
heuristic only, meaning that adding a second heuristic adds
more variation for lower recall values.

Filtering phase hyperparameters: The space of hyperpa-
rameters and the final chosen configuration for both filtering
phase’s classifiers are shown in Table VII. The hyperparameter
tuning of both classifiers run for 100 iterations. The worst
configurations explored obtained a precision of 99.72% for
the source separation, and a precision of 91.46% for the
target separation, reinforcing the need for performing the
optimization of the classifiers’ hyperparameters to reduce false
positives in the SUMo pipeline.

Session matching with imperfect filtering phase: Table VIII
details the precision and recall values for minimum session
durations ranging from 0 to 24 minutes. Precision reaches its
highest value when the minimum session duration is 6 minutes.
However, we see a decrease in precision for longer sessions
due to misclassification errors introduced by the imperfect
filtering phase, e.g., combining client flows to the clearnet with
onion service flows, or combining two onion service flows.

Hyperparameters for DeepCoFFEA: The space of hyper-
parameters we tested and chose for DeepCoFFEA is shown
in Table IX. We trained the DeepCoFFEA model until the

100 ey pas “go cpasags e - |
0.99 ;: o—o-ocommunmun
0.98
0.97
50.96
@
3 0.95
= 0.94
& 09 —e— Min duration=0, 6855 pairs
0.93 Min duration=2, 3529 pairs
0.92 - Min duration=4, 2143 pairs
+=%+ Min duration=6, 1335 pairs
0.91 —<= Min duration=8, 816 pairs
0.90
S ¥ ¥ ? N o P ? R
Recall

Figure 18: Precision-recall curve of SUMo’s matching phase
for different thr values when thr is the sole decision criterion.

Selected parameters

Search space . .
P Source separation Target separation

Hyperparameter

colsample_bylevel {0.3, 04, ..., 0.9} 0.7 0.4
colsample_bytree {0.3, 0.4, ..., 0.9} 0.6 0.6
gamma {0, 0.1, ..., 0.4} 0.1 0.1
learning_rate {0.0001, 0.001, 0.01, 0.1, 1} 0.1 0.1
max_depth {3,6,9, .., 18} 3 15
n_estimators {10, 50, 100, 300, 500, 800} 800 800
reg_alpha {le-5, le-2, 0.1, 1, 10, 100} le-5 le-5
reg_lambda {le-5, le-2, 0.1, 1, 10, 100} 0.1 1

Table VII: Filtering phase hyperparameters (XGBoost).

loss reached 0.002, but our analysis shows that performance
stopped improving after the loss reached below 0.6; the local
similarity threshold technique introduced in DeepCoFFEA’s
original paper [62] did not lead to significant improvements.

D. Guard Probabilities and Feasibility of Correlation Attacks

To our knowledge, no study has explored the vulnerabil-
ity of circuits between clients and onion services to traffic
correlation attacks. So, we decided to conduct two empirical
studies: i) client-side guard probability: establish 3-hop circuits
and gather the guard probabilities by country and by AS, and
ii) probability of onion service circuit being deanonymized:
establish circuits between our and our onion services and
gather the probability that both guard nodes are within the
same AS or the same country. We used stem [69] Python
library and Tor version 0.4.7.14.

Client-side guard probability: Table X shows the top 10
countries with the greatest probability of covering the guard
node of a 3-hop circuit. Germany alone has 30%, while the US
has 24.75%. The 3 top countries cover 63.47% of the guard
traffic. The top 10 countries intercept 89.13%.

Probability of deanonymizing onion service circuits: This
experiment consisted of randomly establishing 40,000 sessions
between Tor onion services and clients from varied regions
and logging the client and the server-side guard nodes when
establishing circuits between our clients and onion services.
We analyzed the probabilities of both guard nodes being under
the same jurisdiction, whether by being under the same AS,
same country or small group of colluding ASes or countries.
If both nodes are under the same jurisdiction, we consider
the onion service circuit deanonymized. Figure 19 shows the
probability of both guard nodes being in the same country or
colluding countries, while Figure 20 shows the probability of
both guard nodes being in the same AS or colluding ASes.

18

Min duration Precision Recall Min duration Precision Recall

0 0.9950 0.8960 14 0.9828 0.9396
2 0.9966 0.9133 16 09714 0.9444
4 0.9970 0.9152 18 0.9500 0.9194
6 0.9976 0.9207 20 0.9231 0.9231
8 0.9961 0.9266 22 0.8750 0.9545
10 0.9938 0.9377 24 0.8235 1.0000
12 0.9901 0.9373

Table VIII: Precision and recall when varying minimum ses-
sion duration analysis of full pipeline execution.

Parameter Search space Setup-1 (solid) Setup-2 (dashed)
Tor flow size {200, 300, 500} 200 300
Exit flow size {300, 500, 800} 300 500
d (seconds) {05, 1, 1.5, ..., 4} 2.0 3.0
window size (seconds) {3, 4, 5, ..., 11} 3.0 5.0
number of windows {5, 7,9, 11} 7 5
per window packets {8, 10, 12, 15, 20} 15 20
o {0.05, 0.1, 0.2} 0.1 0.1
Optimizer SGD, Adam Adam Adam

Table IX: DeepCoFFEA hyperparameter search space and the
setups used.

Country Guard Probability Cumulative Guard Probability

Germany 30.00% 30.00%
usS 24.75% 54.75%

France 8.72% 63.47%
Finland 5.97% 69.44%
Canada 4.09% 73.53%
Netherlands 4.07% 77.60%
Poland 3.49% 81.09%

UK 3.35% 84.44%
Switzerland 2.62% 87.06%
Sweden 2.08% 89.13%

Table X: Top 10 countries with average guard probability.

100%

[
S N
R ¥

80%

@
X
@
3
=

40%:

IS
B

20%

N
R
Deanonymization probability

Deanonymization probability
@
=

)
®
2
®

-
C2Jd<BNT
“220000
Top countrie:

[3 [S =i > 12345678 910111213141516171819

83 ER Rl
@ = Number of colluding countries

O AT

Figure 19: Deanonymization probability by country and group
of colluding countries.

50%

4.0%
2z 2z
E35% £
2 240%
83.0% 8
g g
y

S2.5% S309%
o o
£2.0% =
N Nooo
£1.5% €
> >
§1.0% s
2 S 10%
© ©
@ 0.5% 53
a a

0%

0.0%

123456 78 910111213141516171819
Number of colluding ASes

AS16276
AS24940-
AS197540-
AS12876-
AS8560{1

AS40676
AS31898
AS210558-
AS42730-
AS207992
AS701
AS39421
AS212520
AS35913

Figure 20: Deanonymization probability by AS and group of
colluding ASes.

APPENDIX A
ARTIFACT APPENDIX

This appendix contains instructions to obtain the datasets,
the trained models, the extracted features, and the source code,
and instructions to execute and evaluate SUMo’s pipeline, an
architecture that can deanonymize Tor onion service sessions.
SUMo’s pipeline is composed of two phases, the filtering phase
and the matching phase. The filtering phase is composed of two
machine learning stages, the source separation and the target
separation, both of which output flows to the matching phase.
The matching phase is composed of a standalone classifier that
outputs the final correlation results. The repository includes the
source code and instructions on how to run the experiments.
These experiments result in the main plots presented in the
paper, which can be used to validate the results. Due to
particular hardware requirements, the authors have prepared
a machine to run the experiments, to which the authors will
grant access after being contacted by the evaluators.

A. Description & Requirements

Our datasets (OSTrain, OSValidate, and OSTest) were
generated via scripted clients (using Python and Selenium) that
browse both the clearnet and our own onion services through
the Tor network. We captured all of the traffic exchanged
between clients and onion services at the endpoints, thus,
each dataset is composed of many raw pcap files. These raw
traffic traces include far more information than the features
that SUMo requires. However, due to the scarcity of publicly
available datasets, we believe that it is important to make the
whole traces available, which will allow subsequent studies
without compromising real users in the Tor network. This
means that our datasets are significantly large (tens of GBs),
they take a long time to extract (about 1 hour depending on the
hardware), and they take long to extract the relevant features
from the pcap files (about 1 hour also). Hence, we suggest
using the pre-extracted features (that we also make available)
to reproduce the results exactly as presented in the paper. We
did not include Figure 7 since it uses ground truth present only
in the raw traffic traces, and we thought it to be unnecessarily
burdensome since we show similar results in the remaining
plots in Experiment 1.

Also, due to the non-deterministic nature of training models
and hyperparameter optimization via Bayesian Optimization,
we also provide pre-trained models and the hyperparameters
used to take the results in the paper. All of these functionalities
are still available in the repository’s source code and can be
explored via the documentation in the repository’.

Producing the plots may take longer than expected since
the pairing of flows depends on the hyperparameters, so that
part will also be executed to reproduce the results, and we run
the sliding subset sum each time per each threshold value an-
alyzed. This is purely to analyze how different configurations
affect SUMo and it would not be required in deployment.

1) How to access: The artifact’s repository is available at
https://github.com/danielal.opes/sumo, or as a persistent DOI
at 10.5281/zenodo.8393157. The three datasets are available

Uhttps://github.com/danielaLopes/sumo/blob/main/README.md

at the persistent DOI separately: OSTrain is at 10.5281/zen-
0d0.8362616, OSValidate is at 10.5281/zenodo.8360991, and
OSTest is at 10.5281/zenodo.8359342. The trained models for
the source separation and for the target separation stages are
available at the persistent DOI 10.5281/zenodo.8366378, the
extracted features for the three datasets are available at a
persistent DOI 10.5281/zenodo.8369700, the extracted features
for the three datasets converted in DeepCoFFEA’s format are
available at a persistent DOI 10.5281/zenodo.8386335, and
the DeepCoFFEA models trained with SUMo’s features are
available at a persistent DOI 10.5281/zenodo.8388196.

2) Hardware dependencies: The evaluation of this artifact
depends on the use of a machine equipped with a GPU (we
tested this artifact with an NVIDIA RTX A4000 16GB). For
simplicity, the authors have prepared a machine to run the
experiments. Access to this machine will be granted after the
evaluators contact the authors via HotCRP to share an SSH
public key that will be used to authorize access to the machine.

3) Software dependencies: The evaluation of this artifact
depends on having the following software:

e Ubuntu OS (tested with linux kernel 5.15)
e OpenCL (tested with 3.0), make, g++
e Multiple Python packages (in requirements.txt)

The repository contains a setup.sh script that installs depen-
dencies in the system where the evaluation will take place.

4) Benchmarks: None.

B. Artifact Installation & Configuration

The reviewer is expected to clone the SUMo repository and
to download the artefact containing the features of the dataset.

C. Major Claims

e (Cl): SUMO’s matching phase achieves high precision
and recall when correlating onion service sessions as-
suming a perfect filtering phase, even when an adversary
does not have full traffic coverage. This is proven by
experiments E1 and E2 whose results are illustrated in
Figures 6, 8, 9, and 10.

e (C2): SUMO’s full pipeline remains able to deanomyze
onion service sessions with high precision since SUMo’s
filtering phase can accurately filter sessions between
clients and onion services. This is proven by experiment
E3 whose results are illustrated in Figures 11 and 12.

e (C3): SUMO performs better than the state-of-the-art cor-
relation technique DeepCoFFEA on onion service traffic.
This is proven by experiment E4’s results, illustrated in
Figures 13(a), 13(b), and 14, especially by comparing the
precision-recall curves on Figures 14 and 6.

e (C4): SUMO has 2 orders of magnitude larger throughput
than DEEPCOFFEA (while using considerably less mem-
ory): This is the result of experiment ES whose results are
illustrated in Figure 15.

D. Evaluation

To reproduce the experiments, we made available a script
that runs all the experiments sequentially. Run it by issuing:

./experiment all.sh

https://github.com/danielaLopes/sumo
https://zenodo.org/record/8393157
https://github.com/danielaLopes/sumo/blob/main/README.md
https://zenodo.org/record/8362616
https://zenodo.org/record/8362616
https://zenodo.org/record/8360991
https://zenodo.org/record/8359342
https://zenodo.org/record/8366378
https://zenodo.org/record/8369700
https://zenodo.org/record/8386335
https://zenodo.org/record/8388196

Alternatively, follow this Section, executing one by
one, the scripts as suggested. Run the following script
that installs the necessary dependencies (only required
in the evaluators’ machines, since our machine already
has all the dependencies) necessary for all the experiments:

‘./setup.sh

1) Experiment (EI): [Session Matching with Perfect Filter-
ing Phase] [10 human-minutes + 40 compute-minutes]: This
experiment reproduces the effectiveness of SUMo’s matching
phase assuming a perfect filtering phase. This produces Fig-
ures 6, 8, and 9.

[Preparation] The automated script will download
the extracted features from OSTrain, OSValidate
and OSTest and compile the C code necessary
for all the experiments. Run it by issuing:
./experiment1 setup.sh

[Execution] The automated script will group the
pre-extracted features into pairs of flows, which will

be passed to our sliding subset sum algorithm that
decides which pairs are correlated and not correlated.
It will evaluate the results using multiple threshold and
minimum session duration values. Run it by issuing:

‘ ./experiment1.sh

[Results]

‘ ./experimentl_results.sh ‘

The plots will be generated in the ./experimentl in pdf
and png format.

2) Experiment (E2): [Session Matching with Partial Cov-
erage] [10 human-minutes + 2.5 compute-hour]: This experi-
ment reproduces the effectiveness of SUMo’s matching phase
considering a partial coverage scenario where we simulate an
adversary that is missing the coverage of a continent at each
time. This produces Figure 10.

[Preparation] Same as El.

[Execution] The automated script will group the pre-
extracted features into pairs of flows by partial coverage
scenario (excluding flows captured in a continent in
each different scenario), which will be passed to our
sliding subset sum algorithm that decides which pairs
are correlated and not correlated. It will evaluate the
results using multiple threshold values. Run it by issuing:

‘./experimentZ.sh

[Results] The plots will be generated by the previous
command and they will be available at . /experiment2 in pdf
and png format.

3) Experiment (E3): [Session Matching with Imperfect
Filtering Phase] [10 human-minutes + 1 compute-hour]: This
experiment reproduces the effectiveness of SUMo’s pipeline,
with each filtering phase’s stage evaluated individually and
the final matching phase containing the final results using the
imperfect filtering phase. This produces Figures 11 and 12.

[Preparation] Same as El and the following
automated script will download the pre-trained
models for the filtering phase. Run it by issuing:

‘ ./experiment3 setup.sh

20

[Execution] The automated script will group the
pre-extracted features into pairs of flows, which will
be passed to our sliding subset sum algorithm that

decides which pairs are correlated and not correlated.
It will evaluate the results using multiple threshold and
minimum session duration values. Run it by issuing:
’./experiment3.sh

[Results]

’ ./experiment3 results.sh ‘

The plots will be generated in the ./experiment3 in pdf
and png format.

4) Experiment (E4): [Comparison with the State of the Art
on Flow Correlation] [10 human-minutes + 5 compute-hours]:
This experiment reproduces the comparison between SUMo
and DeepCoFFEA, the state-of-the-art flow correlation attack
for Tor circuits targetting the clearnet. This experiment focus
on the dataset characteristics and DeepCoFFEA’s effectiveness
at correlating the onion service traffic in our datasets. This
produces Figures 13(a), 13(b), and 14.

[Preparation] The automated script will download the
datasets and source codes, and generate the data required
to run experiments with DeepCoFFEA. Run it by issuing:
’ ./experiment4 setup.sh

[Execution] The automated script will analyze the
characteristics of the traffic samples in DeepCoFFEA’s
dataset and SUMo dataset, the latter separated in two
categories, OSTrain combined with OSValidate, and
OSTest. They are compared by duration and number of
packets exchanged per request as a bar plot. Then, it
will train DeepCoFFEA using OSTrain and OSValidate
and test it using OSTest, presenting the results in both
a ROC and a precision-recall curve. Run it by issuing:
./experiment4.sh

[Results] The plots will be generated by the previous
command and they will be available at . /experiment4 in pdf
and png format.

5) Experiment (E5): [Throughput evaluation] [5 human-
minutes + 1 compute-hour]: This experiment reproduces
the comparison between SUMo and DeepCoFFEA regarding
throughput (pairs/s). This produces Figure 15.

[Preparation] None.

[Execution] The automated script will compile
and execute first SUMo, and secondly DeepCoFFEA,
producing files with the standard output. Run it by issuing:
’./experimentS.sh

[Results] The script outputs the maximum throughput
point, as well as the latency for that point. A plot
with the throughput/latency curve for SUMo and
DeepCoFFEA will be generated within the folder
./experiment5 in pdf format. Run it by issuing:
’ ./experiment5 results.sh

The curve may change depending on the GPU used,
however we expect the trend to be the same as in Figure 15.

	Introduction
	Motivation and Threat Model
	Anatomy of Tor Onion Service Sessions
	Website Fingerprinting of Tor Onion Services
	Flow Correlation Attacks on Tor
	Circuit Fingerprinting for Tor Onion Service Traffic
	Threat Model

	The SUMo Attack
	SUMo Attack Overview
	System Architecture
	Filtering Phase
	Matching Phase
	Subset Sum Similarity Score per Window
	Adjusted Similarity Score per Flow Pair
	Hyperparameter Tuning
	Explored Approaches Before Converging on SUMo
	Implementation

	Evaluation Methodology
	Evaluation Results
	Session Matching with Perfect Filtering Phase
	Session Matching with Imperfect Filtering Phase
	Comparison with the State of the Art on Flow Correlation
	Correlation Performance and Efficiency
	Feasibility of Flow Correlation Attacks

	Attack Countermeasures
	Ethical Considerations
	Related Work
	Conclusion
	Appendix
	The Sliding Subset Sum Algorithm
	Testbed Details
	SUMo's Evaluation Details
	Guard Probabilities and Feasibility of Correlation Attacks
	Appendix A: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)
	Experiment (E3)
	Experiment (E4)
	Experiment (E5)

