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The Node.js ecosystem, with its growing popularity and increasing exposure to security vulnerabilities, has a
pressing need for more effective security analysis tools. To reduce false positives, recent works on detecting
vulnerabilities in Node.js packages have developed synthesis algorithms to generate proof-of-concept exploits.
However, these tools focus mainly on vulnerabilities that can be triggered by a single direct call to an exported
function of the analyzed package, failing to generate exploits that require more complex interactions.

In this paper, we present Explode.js, the first tool capable of synthesizing exploits that include complex call
sequences to trigger vulnerabilities in Node.js packages. By combining static analysis and symbolic execution,
Explode.js generates functional exploits that confirm the existence of command, code injection, prototype
pollution, and path traversal vulnerabilities, effectively eliminating false positives. The results of evaluating
Explode.js on two state-of-the-art datasets of Node.js packages with confirmed vulnerabilities show that it
generates significantly more exploits than its main competitor tools. Furthermore, when applied to real-world
Node.js packages, Explode.js uncovered 44 zero-day vulnerabilities, with 4 new CVEs.

CCS Concepts: • Security and privacy→ Software security engineering; Domain-specific security and
privacy architectures; Malware and its mitigation; • Software and its engineering→ Software verification
and validation; • Theory of computation→ Logic and verification; • Applied computing→ Investigation
techniques.

Additional KeyWords and Phrases: Automatic Vulnerability Detection, Symbolic Execution, Exploit Generation,
Node.js Security

ACM Reference Format:

Filipe Marques, Mafalda Ferreira, André Nascimento, Miguel E. Coimbra, Nuno Santos, Limin Jia, and José
Fragoso Santos. 2025. Automated Exploit Generation for Node.js Packages. Proc. ACM Program. Lang. 9, PLDI,
Article 201 (June 2025), 26 pages. https://doi.org/10.1145/3729304

Authors’ Contact Information: Filipe Marques, filipe.s.marques@tecnico.ulisboa.pt, INESC-ID / Instituto Superior Técnico,
Universidade de Lisboa, Lisboa, Portugal; Mafalda Ferreira, mafalda.baptista@tecnico.ulisboa.pt, INESC-ID / Instituto
Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; André Nascimento, andreffnascimento@tecnico.ulisboa.pt,
INESC-ID / Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Miguel E. Coimbra, miguel.e.coimbra@
tecnico.ulisboa.pt, INESC-ID / Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Nuno Santos, nuno.
m.santos@tecnico.ulisboa.pt, INESC-ID / Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Limin Jia,
liminjia@andrew.cmu.edu, Carnegie Mellon University, Pittsburgh, USA; José Fragoso Santos, jose.fragoso@tecnico.ulisboa.
pt, INESC-ID / Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/6-ART201
https://doi.org/10.1145/3729304

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 201. Publication date: June 2025.

HTTPS://ORCID.ORG/0000-0002-2555-5382
HTTPS://ORCID.ORG/0000-0002-5307-4279
HTTPS://ORCID.ORG/0009-0000-0043-3613
HTTPS://ORCID.ORG/0000-0002-7191-5895
HTTPS://ORCID.ORG/0000-0001-9938-0653
HTTPS://ORCID.ORG/0000-0002-8160-349X
HTTPS://ORCID.ORG/0000-0001-5077-300X
https://doi.org/10.1145/3729304
https://orcid.org/0000-0002-2555-5382
https://orcid.org/0000-0002-5307-4279
https://orcid.org/0009-0000-0043-3613
https://orcid.org/0000-0002-7191-5895
https://orcid.org/0000-0001-9938-0653
https://orcid.org/0000-0002-8160-349X
https://orcid.org/0000-0001-5077-300X
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729304


201:2 F. Marques, M. Ferreira, A. Nascimento, M. Coimbra, N. Santos, L. Jia, and J. Fragoso Santos

1 Introduction

Exploit generation is an effective approach for confirming security vulnerabilities, with various
techniques now available for a range of programming languages, including C/C++ [14], Python [68],
and JavaScript (JS) [15, 36]. A key appeal of exploit generation lies in its potential to address the
high false positive rates common in static analysis and other vulnerability detection tools [10].
False positives place a considerable burden on developers, who must manually verify flagged
vulnerabilities, often without clear indicators of actual risk [10, 70]. By automatically generating
a functional exploit, developers can quickly determine whether a vulnerability poses a real risk,
reducing the need for manual confirmation and accelerating the resolution of security issues.

Exploit generation tools are valuable for detecting security vulnerabilities in Node.js, a JS runtime
built on top of the V8 engine [32] that enables server-side execution of JS code. The open nature
of the Node.js platform [56], where packages often import numerous others without security
guarantees, makes it rife with security vulnerabilities [44, 49, 61]. However, synthesizing workable
exploits to confirm such vulnerabilities is challenging due to exploit generation depending heavily
on the syntax and semantics of the target language, making techniques from other languages
unsuitable for JS. The unique intricacies of the Node.js ecosystem complicate this task further: it is
common for vulnerabilities to be deeply nested within Node.js packages. As a result, to trigger a
vulnerability, the exploit may need to call several APIs in a specific order, use callbacks, and supply
APIs with inputs of the correct type and structure.

Existing exploit generation tools for Node.js packages [15, 16, 36] have focused exclusively on
single-interaction vulnerabilities, i.e., vulnerabilities that can be exploited by calling a single exported
function of the vulnerable package. NodeMedic-Fine [15] implements dynamic taint analysis to
detect injection vulnerabilities, executing the package using fuzzer-generated inputs and producing
taint provenance graphs, which are then used to synthesize exploits. A shortcoming of this approach
is that its effectiveness heavily depends on the coverage of the used fuzzer. FAST [36] builds an
enriched control flow graph (CFG) based on a coarse-grained abstract JS semantics, and traverses it
to collect the constraints that guide execution from exported functions to sensitive sinks. It does
not, however, generate constraints that guarantee the occurrence of observable, attacker-controlled
side effects. As a result, some candidate exploits synthesized by FAST fail to execute due to the
imprecisions in the used semantics, while others fail to produce the desired side effects.

We present Explode.js, the first exploit generation tool for Node.js packages that can automati-
cally synthesize functional exploits for multi-interaction vulnerabilities—vulnerabilities that require
a series of interactions with the vulnerable package to be exploited. Given a vulnerable package,
Explode.js can identify code injection, command injection, prototype pollution, and path traversal
vulnerabilities, and build a JS program that is guaranteed to produce observable side effects, thereby
confirming the existence of the vulnerability and eliminating false positives.
Explode.js leverages a novel exploit generation algorithm that combines static analysis with

symbolic execution (SE) in a two-stage pipeline. First, Explode.js computes an exploit template,
consisting of a chain of calls to the functions of the package, where the arguments to each call are
symbolic values. The call chain, if provided with the right arguments, could lead to the execution
of a targeted sensitive sink with attacker-controlled inputs. In this stage, Explode.js determines
which functions need to be called to reach the targeted sensitive sink, the order in which they
should be called, and the type of their corresponding arguments. We organize this information in an
intermediate structure called vulnerable interaction scheme (VIS), from which the tool subsequently
creates the exploit template. In the second stage, Explode.js symbolically executes the exploit
template, aiming to find a control path to the vulnerable sink. If such a path is found, the path
constraints identified by the symbolic execution engine are extended with additional constraints to
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ensure that the arguments passed to the sink result in an attacker-controlled effect. Then, Explode.js
uses a Satisfiability Modulo Theories (SMT) solver to generate concrete inputs that satisfy these
constraints. If such inputs are found, a functional exploit is generated by replacing the symbolic
variables in the exploit template with the corresponding concrete values.

Our implementation of Explode.js leverages Graph.js [23] to generate a graph-based repre-
sentation of the program, which serves as the foundation for creating the VIS and subsequent
exploit templates. Additionally, we implemented a custom-made SE engine, called ECMA-Symb,
to symbolically execute the generated exploit templates. While there are several SE engines for
JavaScript [24–26, 57], we cannot use them directly, as they operate on a file-by-file basis. To use
them, we would have to transform the analyzed package, along with its dependencies, into a single
file, using a bundler such as Webpack [67], Parcel [18], or esbuild [21]. This approach would lead
to significantly slower SE time (§6.5), as it increases exponentially with the size of the code being
analyzed. Instead, the SE engine of Explode.js offers native support for lazy values [39], allowing
for the execution of the package under analysis without access to the code of its dependencies.

To evaluate Explode.js, we first compare its exploit-generation effectiveness against FAST and
NodeMedic-Fine using two state-of-the-art curated datasets of Node.js packages with reported
vulnerabilities [9, 10], showing that Explode.js finds 4.02×more exploits than FAST and 6.61×more
exploits than NodeMedic-Fine. Next, we apply Explode.js to real-world Node.js applications, where
it finds 44 new zero-day security vulnerabilities, for which 4 new CVEs have been assigned. Finally,
we compare the number of exploits generated with and without VISes and lazy values, obtaining
results that indicate that these two techniques are essential for the effectiveness of Explode.js.

2 Overview

We use the example of a vulnerable Node.js package (§2.1) to describe how Explode.js synthesizes
a functional exploit for the package’s vulnerability (§2.2).

2.1 Motivating Example

The code in Fig. 1a depicts an example vulnerable Node.js package that allows clients to upload
data to a remote host. This example reflects vulnerabilities of similar nature and complexity found
in real-world packages. This package exports a FileTransfer class that manages file uploads
by providing methods for preparing and executing the transfer. The uploadData method (lines
23-35) receives the data to be uploaded, stores it in a file if the useTempFiles flag is enabled, and
returns a new object with a run property. This property contains a callback that references the
uploadFile function (lines 4-14), which, in turn, performs the transfer using the rsync command.
This function first checks that the provided file does not use more disk space than allowed (line 5),
in which case it builds the command string and passes it to execSync to be executed. This example
contains an exploitable command injection vulnerability (see Fig. 1d) that allows attacker-controlled
inputs to reach the execSync function (line 10), potentially executing unintended shell commands.
Automatically generating a working exploit for this example poses two key challenges:

Challenge 1: Generating a Source-to-Sink Call Chain. The uploadFile function, where the
execSync call is located, is not directly accessible to package clients. To reach this sink, a client
must execute a specific sequence of function calls, first creating a new FileTransfer instance and
then invoking the uploadData method on that instance. This method returns an object containing
a run callback that will call uploadFile. Automatically identifying this chain of function calls is
challenging, as Node.js packages often expose functions whose inputs and outputs have diverse
types, including objects and callbacks.
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1 const { execSync } = require("child_process")
2 const fs = require("fs-extra");
3
4 function uploadFile(filename, limit, userid,

userdir, host) {↩→
5 if (fs.statSync(filename).size < limit) {
6 var command = "rsync -av"
7 + filename + " "
8 + userid + "@" + host + ":"
9 + userdir;

10 return execSync(command);
11 }
12 console.log("File too big");
13 return null;
14 }
15
16 module.exports = class FileTransfer {
17 constructor(options) {
18 this.host = options.host
19 this.limit = 1 * 1024 * 1024 * 1024 // 1 GiB
20 this.useTempFiles = options.useTempFiles || false
21 }
22
23 uploadData(data) {
24 if (this.useTempFiles && data != "") {
25 tmpfile = `/tmp/${Date.now()}`
26 fs.writeFileSync(tmpfile, data)
27 return {
28 run: (user) =>
29 uploadFile(tmpfile, this.limit,
30 user.id, user.dstDir, this.host)
31 };
32 }
33 ...
34 return null;
35 }
36 }

(a) JavaScript code of the file uploads module.

1 let FileTransfer = require("file-transfer");
2 let options = { host : symStr()
3 , useTempFiles: symBool() };
4 // VIS Call #1: New<FileTransfer>
5 let m = new FileTransfer(options);
6 let data = symStr();
7 // VIS Call #2: Mthd<uploadData>
8 let result = m.uploadData(data);
9 let user = { id: symStr(), dstDir: symStr() };

10 // VIS Call #3: Mthd<run>
11 result.run(user)

(b) Generated exploit template with symbolic inputs.

False True

False True

(c) Symbolic execution tree of the exploit template.

1 let FileTransfer = require("file-transfer");
2 let m = new FileTransfer({ host: "foobar.baz",

useTempFiles: true });↩→
3 let data = "sRegTD";
4 let res = m.uploadData(data);
5 res.run({ id: "foo", dstDir: "bar; touch pwned.txt" });

(d) Synthetically generated exploit.

Fig. 1. Exploit synthesis for a Node.js package with a command injection vulnerability.

Challenge 2: Crafting an Effectful Payload. Even when knowing a call chain that reaches the
execSync sink, an exploit must provide a specific payload that will trigger unintended side effects.
This includes forming a syntactically valid shell command that results in malicious behavior, such
as, for example, deleting all local files by appending “; rm -f *” to the command string for rsync
(line 6). Generating inputs for such exploits requires a thorough exploration of all executions paths.

2.2 Explode.js in Action

Explode.js combines static analysis with SE in a two-stage pipeline to solve both challenges
described above.

Stage 1: Generating Exploit Templates. The static analysis component of Explode.js first
produces a VIS, that is, an intermediate structure that includes the chain of function calls needed to
reach the sink together with their respective argument types. While a package may have multiple
VISes, our example has a single one, shown below, where each line is a function call and the arrows
indicate that each function should be applied to the return value of the previous call.

Call #1: New⟨FileTransfer, options : { host : string; useTempFiles : boolean }⟩
Call #2: −→ Mthd⟨uploadData, data : string⟩
Call #3: −→ Mthd⟨run, user: { id : string; dstDir : string}⟩
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This VIS specifies that, to activate the vulnerability in the run method, the exploit acting as the
package client must first call the FileTransfer constructor, which is exported by the package and
expects an input object with properties host and useTempFiles respectively of types string and
boolean (see Fig. 1a, lines 17-21). Next, the exploit must call the method uploadData on the object
returned by the constructor with a string argument. Finally, the run method must be called on the
object returned by uploadData, with an input object with properties id and dstDir of type string.
In the VIS, we use the keywords New and Mthd to differentiate method calls from constructor calls.
Currently, Explode.js only computes linear VISes, where the 𝑖-th function to be called is obtained
from the previous (𝑖 − 1)-th call in the sequence. We discuss the impact of this limitation in §7.

After creating the VIS, we transform it into an exploit template, that is, a symbolic driver program
that calls each function contained in the VIS using symbolic values of the appropriate type. Fig. 1b
shows the exploit template generated for our example. Lines 5, 8, and 11 capture the VIS call
chain, while Lines 2, 6, and 9 initialize the symbolic values passed to each call, using the primitives
symStr() and symBool() for creating symbolic strings and booleans, respectively.

Stage 2: Resolving Exploit Templates. Having found an exploit template capable of reaching
the vulnerable sink, the next step is to replace the symbolic inputs in the template with concrete
values that produce unintended side effects. To this end, we use SE to find a control path from the
template’s source to the sensitive sink. If found, we extend the set of collected path constraints
with well-formedness constraints that ensure that the sink input satisfies its corresponding syntactic
rules; for instance, the input of a code injection sink must be a valid JS statement. Then, we use an
SMT solver to search for concrete inputs that satisfy all the constraints; if such inputs are found,
we inject them into the exploit template to produce a concrete exploit.

Returning to our example, Fig. 1c shows the simplified SE tree generated by Explode.js. The
top-level node represents the first conditional encountered during SE, which appears on line 24 of
the uploadData function. When useTempFiles is false, this function returns null, leading to a type
error on line 11 of the exploit template, which attempts a null dereference (i.e., null.run(user)).
Continuing along the branch where useTempFiles is true, the second conditional appears on line
5 of the uploadFile function. This function checks that the size of the file to be uploaded is below
the specified threshold using the external function statSync of the fs-extra package. To support
such calls, Explode.js uses a new form of lazy initialization [39], creating a fresh symbolic value
that represents the file size. When this size is below the limit threshold, the program reaches the
sensitive sink with the symbolic payload:

"rsync -av /tmp/1730296434234 " + id + "@" + host + ":" + dstDir

and the path constraint useTempFiles ∧ statSync(filename).size < limit. Importantly, the
symbolic payload is obtained by concatenating a series of strings, of which id, host, and dstDir
are attacker-controlled. However, to prove that the sink is exploitable, we must find concrete values
for the symbolic variables that direct the execution along the identified control path and produce a
valid sink payload containing an attack. To this end, we extend the generated path constraint with
the well-formedness constraint:

ValidAttack("rsync -av /tmp/1730296434234 " + id + "@" + host + ":" + dstDir)

that guarantees that the sink payload is a valid sequence of shell commands and contains an attack.
Finally, Explode.js queries an SMT solver for a model that satisfies the generated constraints,

obtaining, for instance, the following concrete values for the symbolic variables in the template:
host = "foobar", useTempFiles = true, id = "foo", dstDir = "bar; touch pwned.txt \#"

Explode.js then replaces the symbolic variables in the template with the obtained concrete values,
generating the concrete exploit given in Fig. 1d. The symbolic variables not appearing in the
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Fig. 2. Explode.js pipeline for vulnerability detection, exploit generation, and validation.

generated model (e.g., data) are assigned random values of the appropriate type. The execution of
the generated exploit leads to a call to the sensitive sink execSync with the string:

"rsync -av /tmp/1731165952 foo@foobar:bar; touch pwned.txt \#"

resulting in the creation of the file pwned.txt and confirming the vulnerability.

3 Explode.js

Fig. 2 presents the architecture of Explode.js. The tool takes a Node.js package as input and outputs
a list of vulnerability reports, each corresponding to an identified vulnerability within the code.
These reports include the control path leading to the vulnerable sink and, if generated, a concrete
proof-of-concept (PoC) exploit that confirms the existence of the vulnerability. If Explode.js is
unable to synthesize a concrete exploit, only the vulnerable control path is reported. Currently,
Explode.js is able to detect and exploit path traversal (CWE-22), command injection (CWE-78),
code injection (CWE-94) and prototype pollution (CWE-1321) vulnerabilities.
Explode.js is organized into several modules that implement its two main execution stages, as

introduced in §2.2. Stage 1, which is responsible for generating exploit templates for each potential
vulnerability identified in the code, operates through the following three modules:
(1) Reachable Functions Computation: This module identifies all attacker-controlled functions

in the given Node.js package, i.e., functions that an attacker can directly call by interacting
with the package. Each attacker-controlled function is associated with an interaction scheme,
outlining the interactions required to obtain and execute the function. We describe the algorithm
for identifying attacker-controlled functions and computing their interaction schemes in §4.1.

(2) Vulnerable Interaction Scheme (VIS) Detector: This module determines, for each sensi-
tive sink, whether that sink is reachable from an attacker-controlled function with attacker-
controlled inputs. To this end, it leverages Graph.js [23] to build a Multiversion Dependency
Graph (MDG) of the package under analysis and executes sink-specific vulnerability-detection
queries on the constructed graph to identify vulnerable data flows connecting attacker-controlled
inputs to sensitive sinks. The interaction schemes associated with the functions in which such
data flows originate are referred to as vulnerable interaction schemes.

(3) Exploit Template Generator: This module compiles each generated VIS into an exploit
template that invokes the functions in the VIS in the correct order with symbolic arguments
of the appropriate type. To determine the argument types, we implement an intra-procedural,
flow-insensitive type analysis inspired by [35]. We describe the compilation of VISes in §4.2.
Taking each exploit template as input, Stage 2 attempts to identify a vulnerable control path and

synthesize a concrete exploit. This process is achieved by the following modules:
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(1) Symbolic Execution Engine (ECMA-Symb): This module employs ECMA-Symb, a custom-
made SE engine developed specifically for Node.js, to symbolically execute exploit templates
in order to identify control paths from the template’s source to the targeted sensitive sink.
For each path, it produces an exploit outcome comprising the type of the reached sink, the
symbolic payload passed to the sink, and the generated path constraints. To avoid analyzing
all external packages, we employ a novel form of lazy initialization [39], which models the
results of function invocations on third-party objects as special symbolic values whose behavior
adapts according to the contexts in which they are used. If a lazy value flows into a sensitive
sink, the tool reports a potentially vulnerable exploit outcome, which it then tries to concretize
into a vulnerable exploit in the next two stages. This concretization may, however, fail because
lazy values over-approximate the behavior of their associated external packages. In such cases,
developers should provide symbolic summaries [55] capturing the precise behavior of the
imported package. We formalize the symbolic semantics underpinning ECMA-Symb in §5.1.

(2) Exploit Outcome Resolver: Receiving as input an exploit outcome together with the corre-
sponding exploit template, this module starts by constructing an SMT formula to find concrete
inputs that direct the execution along the identified control path and that produce a valid sink
payload containing an attack. If the solver finds a satisfying assignment, the obtained values
are substituted into the exploit template, producing a candidate exploit. For the SMT solver, we
use Z3 [17]. Our exploit resolution algorithm is formally described in §5.2.

(3) Exploit Validation Engine: Since our lazy initialization mechanism does not fully capture
the behavior of imported packages, the candidate exploit may fail to produce the expected
result. To prevent Explode.js from reporting false positives, this module executes the generated
exploit in Node.js and checks if its execution produces an observable effect, reporting only
those exploits for which such an effect is confirmed. The type of observable effect depends on
the vulnerability; for instance, for code and command injection exploits, the engine checks if a
file with a predetermined name is created in the local directory. If the effect is observed, the
exploit is considered valid and presented to the user; otherwise, it is discarded, and only the
potentially vulnerable control path is shown.

4 Exploit Template Generation

This section defines VISes, formalizes their construction algorithm and correctness criterion (§4.1),
and describes our algorithm for converting VISes into exploit templates (§4.2).

4.1 Vulnerable Interaction Schemes (VISes)

The first step of Explode.js’s core algorithm is to identify the attacker controlled functions of the
given package, i.e., the functions that an attacker can directly call via one or more interactions with
the package. To this end, we introduce the notion of interaction scheme, 𝜎 ∈ Σ. We say that 𝜎 is an
interaction scheme for function 𝑓 if it comprises a sequence of calls to the functions, methods, and
constructors of the given package that ends with a direct call to 𝑓 . Essentially, an interaction scheme
describes how to obtain and execute a function from the package, starting from the exported object
and progressing through a sequence of interactions with the objects and functions returned by
the package. A limitation of our approach is that it only generates linear interaction schemes, i.e.,
schemes where calling a function requires it to be either exported by the package or returned by
the previous call within the scheme. Nevertheless, our experiments indicate that these schemes are
sufficiently expressive to identify most vulnerabilities in real-world Node.js packages.

Formally, we define an interaction scheme as a sequence 𝑐1 ⊲ . . . ⊲ 𝑐𝑛 of call actions 𝑐 ∈ C, where
a call action consists of a pair (𝑓 , 𝜙), abbreviated as 𝑓𝜙 , comprising a function identifier 𝑓 ∈ F and
a call type 𝜙 ∈ Φ. Call types are given by the grammar 𝜙 ∈ ΦF call | new | mthd (𝑝), where call
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denotes a function call, new a constructor invocation, and mthd (𝑝) a method call on property 𝑝 . To
simplify the notation, we omit the name of the property holding the method when it coincides with
the method’s identifier, writing 𝑓mthd instead of 𝑓mthd (𝑓 ) . For instance, the interaction sequence for
the arrow function run (line 28) of Fig. 1a is:

FileTransfernew ⊲ getRemoteUploadDatamthd ⊲ runmthd

Given a package 𝑃 , we say that 𝜎 ∈ Σ is a valid interaction scheme for a function 𝑓 ∈ F , if it
consists of a sequence of call actions that, starting from the package’s exported object, leads to the
execution of 𝑓 . We formalize this definition below.

Definition 4.1 (Valid Interaction Scheme). An interaction scheme 𝜎 ∈ Σ for a function 𝑓 ∈ F is
said to be valid for a package 𝑃 , written 𝑃 ⊢ 𝜎 ≫ 𝑓 , if it can be derived using the following rules:

FunExported
𝑓 ∈ 𝑃 .exported 𝜙 = 𝑃 .exportType(𝑓 )

𝑃 ⊢ 𝑓𝜙 ≫ 𝑓

FunReturned
(𝑔, 𝜙) ∈ 𝑃 .returners(𝑓 ) 𝑃 ⊢ 𝜎 ≫ 𝑔

𝑃 ⊢ 𝜎 ⊲ 𝑓𝜙 ≫ 𝑓

1 Function FindPaths(𝑃, 𝑓 ):
2 W ← [ (⟨⟩, 𝑓 ) ]
3 R ← []
4 whileW ≠ [] do
5 (𝜎,ℎ) ←W .pop()
6 if 𝑃 .isExported(ℎ) then
7 𝜙 ← 𝑃 .exportType(ℎ)
8 R .push(ℎ𝜙 ⊲ 𝜎)
9 foreach (𝑔, 𝜙) ∈ 𝑃 .returners(ℎ) do
10 if 𝑔 ∉ 𝜎 then

11 𝜎′ ← ℎ𝜙 ⊲ 𝜎

12 W .push(𝜎′, 𝑔)
13 return R

Algorithm 2: Interaction schemes leading to
function 𝑓 in package 𝑃 .

There are two cases to consider. [FunExported]
If a function 𝑓 is exported by 𝑃 , its interaction
scheme 𝜎 consists only of the call action of 𝑓 . The
call type 𝜙 depends on how 𝑓 is exported: if it is
exported within an object, it will be a method call;
if it is exported directly, it can be either a construc-
tor call or a function call. We assume that directly-
exported functions that use the keyword this
should be called as constructors. [FunReturned]
If a function 𝑓 is returned by a function 𝑔 for
which there is an interaction scheme 𝜎 , then the
interaction scheme of 𝑓 is obtained by concate-
nating 𝜎 with the call action of 𝑓 . The call type
𝜙 depends on how 𝑓 is returned by 𝑔. In the def-
inition, we use (𝑔, 𝜙) ∈ 𝑃 .returners(𝑓 ) to mean
that 𝑓 may be returned by 𝑔 with the call type 𝜙 .
We have implemented a custom-made static analysis to compute this information.

Algorithm 2 describes a deterministic procedure for computing the valid interaction schemes
for a function 𝑓 from package 𝑃 . The algorithm computes the interaction schemes backwards,
starting from the target function and tracing back to the package’s exported functions. To this end,
it maintains a work listW of pairs of the form (𝜎,𝑔), where 𝜎 is a candidate scheme that reaches 𝑓
starting from the return of 𝑔. At each iteration of the main loop, the algorithm proceeds as follows.
It pops the first pair (𝜎,ℎ) fromW and checks if ℎ is an exported function. If it is, the algorithm
computes the call type 𝜙 of ℎ, and pushes the complete sequence to the result list R. Subsequently,
the algorithm identifies all functions 𝑔 that return ℎ and are not yet present in the current candidate
scheme 𝜎 . For each such function, it adds a new candidate scheme toW, extending 𝜎 , with a call
to ℎ of type 𝜙 . The following theorem establishes the correctness of Algorithm 2, ensuring the
validity of all computed schemes.

Theorem 4.2. 𝜎 ∈ FindPaths(𝑃, 𝑓 ) =⇒ 𝑃 ⊢ 𝜎 ≫ 𝑓

After finding all the attacker-controlled functions and their associated interaction schemes,
Explode.js leverages Graph.js [23] to identify potentially vulnerable data flows connecting the
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inputs of these functions to sensitive sinks. To achieve this, we have implemented a set of Graph.js
queries [23] that look for vulnerable data flows corresponding to our targeted vulnerabilities. The
interaction schemes corresponding to attacker-controlled functions for which such data flows exist
are referred to as vulnerable interaction schemes.

4.2 Exploit Templates

We transform a vulnerable interaction scheme into an exploit template by traversing the scheme’s
call actions and creating, for each call action, a call statement with symbolic arguments of the
appropriate type. Argument types are inferred using a straightforward flow-insensitive intra-
procedural analysis. Types 𝜏 ∈ T are given by the grammar:

𝜏 F number | string | boolean | {𝑝1 : 𝜏1, . . . , 𝑝𝑛 : 𝜏𝑛}

where number, string, and boolean respectively denote the number, string and boolean primitive
types, whereas {𝑝1 : 𝜏1, . . . , 𝑝𝑛 : 𝜏𝑛} denotes the object type that associates each property 𝑝𝑖
with type 𝜏𝑖 . For instance, the type of the constructor’s argument options, appearing in line 17
of Example 1a, is { host : string, useTempFiles : boolean }, signifying that the constructor
expects as input an object with a property host of type string and a property useTempFiles
of type boolean. The property host is inferred to be of type string since it is used in the string
concatenation operation in line 8. Analogously, the property useTempFiles is inferred to be of
type boolean because it is used in the logical binary expression of line 24.
We formalize exploit template generation with the help of three compilation functions: (i) the

interaction scheme compiler 𝑆𝐶 that given a package 𝑃 and an interaction scheme 𝜎 generates
the corresponding exploit template in the form of a symbolic test; (ii) the call action compiler 𝐴𝐶
that converts a call action 𝑐 into a symbolic statement that performs the corresponding call with
symbolic arguments of the appropriate types; and (iii) the type compiler 𝑇𝐶 that, given a type
𝜏 , generates a statement that creates a symbolic value of that type. Fig. 3 depicts a subset of the
compilation rules. Using the algorithm captured by the rules, Explode.js generates the exploit
template shown in Fig. 1b for the vulnerable interaction scheme of Fig. 1a. In the following, we
explain the compilation rules in a top-down manner.

Compiling an interaction scheme (Scheme Compiler) involves compiling each of its call actions
(𝑓𝑖 , 𝜙𝑖 ) using the call action auxiliary compiler,𝐴𝐶 . The first call action is compiled to a call statement
on the package’s exported object and all subsequent call actions are compiled to call statements on
the result 𝑟𝑖−1 of the preceding call. To compile call actions of type call (Call Action Compiler -
Function Call), the action compiler 𝐴𝐶 first determines the types 𝜏1, . . . , 𝜏𝑛 of the function’s
parameters, using its type analyzer. Then, it uses the auxiliary type compiler, 𝑇𝐶 , to translate each
type 𝜏𝑖 to a statement 𝑠𝑖 that assigns a fresh symbolic value of type 𝜏𝑖 to 𝑥𝑖 . The action compiler
then generates a call statement to the function 𝑔 returned by the preceding call action, using the
symbolic variables 𝑥1, . . . , 𝑥𝑛 as arguments. The type compiler 𝑇𝐶 is more straightforward. For
primitive types, it simply generates a fresh symbolic value of the appropriate type; for object types,
it recursively compiles each property type 𝜏𝑖 to a new value, and then constructs a new object with
the compiled properties.

5 Exploit Template Resolver

To symbolically execute the code of a package without stepping into the code of its dependencies,
Explode.js supports lazy values, which are special symbolic values whose behavior adapts according
to the contexts in which they are used. This section formalizes our new SE engine for JS focusing
on its new aspects (§5.1) and describes our algorithm for generating concrete exploits (§5.2).
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Scheme Compiler
𝑟0 = 𝑃 .exportedObject

𝐴𝐶𝑃 (𝑟𝑖−1, (𝑓𝑖 , 𝜙𝑖 )) = ⟨𝑠𝑖 , 𝑟𝑖 ⟩ |𝑛𝑖=1
𝑆𝐶𝑃

(
(𝑓1, 𝜙1), . . . , (𝑓𝑛, 𝜙𝑛)

)
= 𝑠1 ; . . . ; 𝑠𝑛

Call Action Compiler (Function Call)
𝑃 .paramTypes(𝑓 ) = [𝜏1, . . . , 𝜏𝑛] 𝑇𝐶 (𝜏𝑖 ) = ⟨𝑠𝑖 , 𝑥𝑖 ⟩ |𝑛𝑖=1

𝑟 fresh 𝑠 = 𝑠1 ; . . . ; 𝑠𝑛 ; 𝑟 ≔ 𝑔(𝑥𝑖 , . . . , 𝑥𝑛)
𝐴𝐶𝑃 (𝑔, 𝑓call) = ⟨𝑠, 𝑟 ⟩

Type Compiler (Number)
𝑥 fresh 𝑠 = 𝑥 ≔ symNum()

𝑇𝐶 (number) = ⟨𝑠, 𝑥⟩

Type Compiler (Object)
𝑇𝐶 (𝜏𝑖 ) = ⟨𝑠𝑖 , 𝑥𝑖 ⟩ |𝑛𝑥=1 𝑥 fresh 𝑠 = 𝑠1; . . . ; 𝑠𝑛 ; 𝑥 ≔ {𝑝𝑖 : 𝜏𝑖 |𝑛𝑖=1}

𝑇𝐶 ({𝑝1 : 𝜏1, . . . 𝑝𝑛 : 𝜏𝑛}) = ⟨𝑠, 𝑥⟩

Fig. 3. Exploit Template Generation Compilers.

5.1 Symbolic Semantics of Lazy Values

In the following, we formalize the symbolic semantics underpinning Explode.js for the core of JS
given below.
Core JavaScript Syntax

𝑒 ∈ Expr F 𝑣 ∈ V | 𝑥 ∈ X
𝑠 ∈ Stmt F 𝑥 ≔ 𝑒 | 𝑥 ≔ 𝑒1 ⊕ 𝑒2 | 𝑥 ≔ {} | 𝑥 ≔ 𝑒.𝑝 | 𝑒1.𝑝 ≔ 𝑒2 | 𝑥 ≔ 𝑒1 [𝑒2] | 𝑒1 [𝑒2] ≔ 𝑒3

| 𝑥 ≔ 𝑒𝑓 (𝑒1, . . . , 𝑒𝑛) | return 𝑒 | if (𝑒) {𝑠1} else {𝑠2} | while (𝑒) {𝑠} | 𝑠1; 𝑠2 | 𝑠
𝑠 ∈ �Stmt F 𝑥 ≔ 𝑡 .sval() | assume 𝑒 | assert 𝑒

Expressions 𝑒 ∈ Expr include literal values and program variables. Statements 𝑠 ∈ Stmt include
simple assignments, binary operations, object allocations, static/dynamic property lookups and
assignments, function calls, the return, if, and while statements, sequencing, and symbolic
statements. Symbolic statements 𝑠 ∈ �Stmt are used for creating and reasoning about symbolic
values: we use 𝑥 ≔ 𝑡 .sval() for creating a fresh symbolic variable of type 𝑡 , assume 𝑒 for adding
the constraint 𝑒 to the current path constraint, and assert 𝑒 for checking if the constraint 𝑒 is
implied by the current path constraint. Symbolic values are given by: 𝑣 ∈ V̂ F 𝑣 | 𝑥 | 𝜈 | 𝑣1 ⊕ 𝑣2,
which include concrete values 𝑣 ∈ V , symbolic variables 𝑥 ∈ X̂, lazy values 𝜈 ∈ N , and binary
operations on symbolic values.
We formalize the symbolic semantics of core JS statements using a semantic judgment of the

form: ⟨ℎ, 𝜌, 𝜋, 𝑠⟩ ⇝ ⟨ℎ′, 𝜌 ′, 𝜋 ′, 𝜔⟩ meaning that the symbolic evaluation of statement 𝑠 in input
configuration ⟨ℎ, 𝜌, 𝜋⟩ results in the output configuration ⟨ℎ′, 𝜌 ′, 𝜋 ′, 𝜔⟩. An input configuration
includes: (1) a symbolic heap ℎ ∈ �Heap : L × Str ⇀ V̂ mapping pairs of locations 𝑙 ∈ L and
properties 𝑝 ∈ Str to symbolic values; (2) a symbolic store 𝜌 ∈ �Store : X ⇀ V̂ mapping program
variables to symbolic values; and (3) a path constraint 𝜋 keeping track of all the constraints on
which the current execution has branched so far. Output configurations ⟨ℎ, 𝜌, 𝜋, 𝜔⟩ are similar to
input configurations, except that they additionally include a computation outcome 𝜔 that captures
the flow of execution. Computation outcomes are given by the grammar:

𝜔 F Cont | CMI(𝜋, 𝑓 , 𝑣) | CDI(𝜋, 𝑓 , 𝑣) | PP(𝜋, 𝑙, 𝑝, 𝑣) | AsrtFail
where: (1) the empty continuation outcome Cont denotes that the execution may proceed to
the next statement; (2) the command injection outcome CMI(𝜋, 𝑓 , 𝑣) denotes that the execution
generates a command injection vulnerability with path constraint 𝜋 , sink type 𝑓 , and sink payload 𝑣 ;
(3) the code injection outcome CDI(𝜋, 𝑓 , 𝑣) denotes that the execution generates a code injection
vulnerability, with path constraint 𝜋 , sink type 𝑓 , and sink payload 𝑣 ; (4) the prototype pollution
outcome PP(𝜋, 𝑙, 𝑝, 𝑣) denotes that the execution generates a prototype pollution vulnerability with
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Binary Operation
J𝑒1K𝜌 = 𝑣1 J𝑒2K𝜌 = 𝑣2 type(⊕) = (𝜏1, 𝜏2)
𝑣 ′1, 𝜋1 = conv(𝑣1, 𝜏1) 𝑣 ′2, 𝜋2 = conv(𝑣2, 𝜏2)
𝜌′ = 𝜌 [𝑥 ↦→ 𝑣 ′1 ⊕ 𝑣

′
2] 𝜋 ′ = 𝜋 ∧ 𝜋1 ∧ 𝜋2

⟨ℎ, 𝜌, 𝜋, 𝑥 ≔ 𝑒1 ⊕ 𝑒2⟩⇝ ⟨ℎ, 𝜌′, 𝜋 ′⟩

Lazy Static Property Lookup
J𝑒K𝜌 = 𝜈 𝑙, 𝜈′ fresh

ℎ′ = ℎ ⊎ (𝑙, 𝑝) ↦→ 𝜈 ′ 𝜌′ = 𝜌 [𝑥 ↦→ 𝜈 ′]
(𝜋 ′ = 𝜋 ∧ 𝜈 = 𝑙) Sat

⟨ℎ, 𝜌, 𝜋, 𝑥 ≔ 𝑒.𝑝⟩⇝ ⟨ℎ′, 𝜌′, 𝜋 ′⟩

Lazy Static Property Assignment
J𝑒1K𝜌 = 𝜈 J𝑒2K𝜌 = 𝑣 𝑙 fresh

ℎ′ = ℎ ⊎ (𝑙, 𝑝) ↦→ 𝑣 (𝜋 ′ = 𝜋 ∧ 𝜈 = 𝑙) Sat
⟨ℎ, 𝜌, 𝜋, 𝑒1 .𝑝 ≔ 𝑒2⟩⇝ ⟨ℎ′, 𝜌, 𝜋 ′⟩

If-then-else (True)
J𝑒K𝜌 = 𝑣 𝑣 ′, 𝜋𝑣′ = conv(𝑣, Boolean)

(𝜋 ′ = 𝜋 ∧ 𝜋𝑣′ ∧ 𝑣 ′) Sat
⟨ℎ, 𝜌, 𝜋, if (𝑒) {𝑠1} else {𝑠2}⟩⇝ ⟨ℎ, 𝜌, 𝜋 ′, 𝑠1⟩

Lazy Symbolic Function Call
J𝑒𝑓 K𝜌 = 𝜈 J𝑒𝑖K𝜌 = 𝑣𝑖 |𝑛𝑖=1 𝜈 ′fresh

𝜌′ = 𝜌 [𝑥 ↦→ 𝜈 ′] 𝜋 ′ = 𝜋 ∧ 𝜈 (𝑣1, . . . , 𝑣𝑖 ) = 𝜈 ′

⟨ℎ, 𝜌, 𝜋, 𝑥 ≔ 𝑒𝑓 (𝑒1, . . . , 𝑒𝑛)⟩⇝ ⟨ℎ, 𝜌′, 𝜋 ′⟩

Command Injection
𝑓 ∈ Sinks.CMI

J𝑒K𝜌 = 𝑣 isSymbolic(𝑣, 𝜋)
⟨ℎ, 𝜌, 𝜋, 𝑓 (𝑒)⟩⇝ ⟨ℎ, 𝜌, 𝜋, CMI(𝜋, 𝑓 , 𝑣)⟩

Code Injection
𝑓 ∈ Sinks.CDI

J𝑒K𝜌 = 𝑣 isSymbolic(𝑣, 𝜋)
⟨ℎ, 𝜌, 𝜋, 𝑓 (𝑒)⟩⇝ ⟨ℎ, 𝜌, 𝜋, CDI(𝜋, 𝑓 , 𝑣)⟩

Prototype Pollution
J𝑒1K𝜌 = 𝑙 isPrototypeChainModifiable(𝑙, 𝑝, 𝑣)

J𝑒2K𝜌 = 𝑣 isSymbolic(𝑣, 𝜋)
⟨ℎ, 𝜌, 𝜋, 𝑒1 .𝑝 ≔ 𝑒2⟩⇝ ⟨ℎ, 𝜌, 𝜋, PP(𝜋, 𝑙, 𝑝, 𝑣)⟩

Fig. 4. Symbolic Semantics of Core JS (fragment): ⟨ℎ, 𝜌, 𝜋, 𝑠⟩⇝ ⟨ℎ′, 𝜌′, 𝜋 ′, 𝜔⟩.

path constraint 𝜋 , built-in object 𝑙 , property 𝑝 , and value 𝑣 ; and, (5) the failed assertion outcome
AsrtFail denotes that the execution resulted in an assertion failure. Fig. 4 presents a subset of the
symbolic semantic rules. For clarity, we omit the outcome element 𝜔 when the rules produce the
empty continuation outcome Cont.

Binary Operation. To evaluate a binary operation 𝑥 ≔ 𝑒1 ⊕ 𝑒2, we first evaluate 𝑒1 and 𝑒2 in
the current store 𝜌 , obtaining the symbolic values 𝑣1 and 𝑣2. Then, we check that the types of these
values are compatible with the operand types of the binary operator ⊕, performing any necessary
conversions, which yields the symbolic values 𝑣 ′1 and 𝑣

′
2 and the additional path constraints 𝜋1 and

𝜋2. Finally, we store the result, 𝑣 ′1 ⊕ 𝑣 ′2, in 𝑥 and extend the path constraint 𝜋 with 𝜋1 and 𝜋2.

Lazy Static Property Lookup. To evaluate a static property lookup 𝑥 ≔ 𝑒.𝑝 , we first evaluate
𝑒 in the current store 𝜌 . Then, if this results in a lazy value 𝜈 , we create a fresh location 𝑙 to store
a fresh lazy value 𝜈 ′ in property 𝑝 , updating the heap ℎ accordingly. Finally, we store the newly
created lazy value 𝜈 ′ in 𝑥 and extend the path constraint 𝜋 with 𝜈 = 𝑙 to mean that 𝑙 coincides with
the lazy value 𝜈 in the current path.

Lazy Static Property Assignment. To evaluate a static property assignment 𝑒1.𝑝 ≔ 𝑒2, we
first evaluate 𝑒1 and 𝑒2 in the current store 𝜌 . Then, if this evaluation respectively yields a lazy
value 𝜈 and a symbolic value 𝑣 , we create a fresh location 𝑙 to store 𝑣 in property 𝑝 , updating the
heap accordingly. Finally, we extend the path constraint 𝜋 with 𝜈 = 𝑙 to mean that 𝑙 is storing the
lazy value 𝜈 in the current path.

If-then-else (True). To evaluate an if statement if(𝑒) {𝑠1} else {𝑠2} using the If-True rule,
we first evaluate 𝑒 in the current store 𝜌 , obtaining the symbolic value 𝑣 , which is then converted to
the boolean value 𝑣 ′. Then, if the constraint 𝜋 ∧ 𝜋𝑣′ ∧ 𝑣 ′ is satisfiable, meaning that the expression
𝑒 may evaluate to true, we proceed with evaluating 𝑠1 on the updated path constraint 𝜋 ′.
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Command Injection
𝜔 = CMI(𝑣, 𝑓 , 𝜋) 𝜋 ′ ∈ AttackPatts(CMI, 𝑣)

sat(𝜋 ∧ 𝜋 ′) 𝜀 = model(𝜋 ∧ 𝜋 ′)
FindExploit(𝜔) ⇝ 𝜀

Code Injection
𝜔 = CDI(𝑣, 𝑓 , 𝜋) 𝜋 ′ ∈ AttackPatts(CDI, 𝑣)

sat(𝜋 ∧ 𝜋 ′) 𝜀 = model(𝜋 ∧ 𝜋 ′)
FindExploit(𝜔) ⇝ 𝜀

Prototype Pollution
𝜔 = PP(𝜋, 𝑙, 𝑝, 𝑣) sat(𝜋) 𝜀 = model(𝜋)

FindExploit(𝜔) ⇝ 𝜀

Fig. 5. Exploit Symbolic Semantics of Vulnerability Outcomes {CMI, CDI, PP} ∈ 𝜔 (fragment).

Lazy Symbolic Function Call To evaluate a function call 𝑥 ≔ 𝑒𝑓 (𝑒1, . . . , 𝑒𝑛), we first evaluate
the function expression 𝑒𝑓 in the current store 𝜌 . If this results in a lazy value 𝜈 , we then evaluate
the function’s arguments 𝑒1, . . . , 𝑒𝑛 and create a fresh lazy value 𝜈 ′, representing the return value.
Finally, we store 𝜈 ′ in 𝑥 and extend the path constraint 𝜋 with 𝜈 (𝑣1, . . . , 𝑣𝑛) = 𝜈 ′, indicating that 𝜈 ′
is obtained by applying 𝜈 to the arguments 𝑣1, . . . , 𝑣𝑛 .

Command Injection. To evaluate a function call where the callee is a command injection sink,
such as exec(...), we first evaluate the argument 𝑒 in the current store 𝜌 , obtaining a value 𝑣 . Then,
if 𝑣 is symbolic, the evaluation produces the command injection outcome CMI(𝜋, 𝑓 , 𝑣), reporting a
command injection vulnerability with path constraint 𝜋 , sink 𝑓 , and payload 𝑣 .

Code Injection. The evaluation of a function call where the callee is a code injection sink, such
as eval(...), follows the same reasoning as the Command Injection rule, except that it produces a
code injection outcome CDI(𝜋, 𝑓 , 𝑣).

Prototype Pollution. When evaluating a property assignment 𝑒1.𝑝 ≔ 𝑒2, we first evaluate 𝑒1
and 𝑒2 in the current store 𝜌 , obtaining the location 𝑙 and symbolic value 𝑣 , respectively. Then, if 𝑙 is
the location of a built-in prototype object, 𝑝 is one of its modifiable properties, and 𝑣 is symbolic, the
evaluation produces the prototype pollution outcome PP(𝜋, 𝑙, 𝑝, 𝑣), reporting a prototype pollution
vulnerability with path constraint 𝜋 , prototype object 𝑙 , property 𝑝 , and value 𝑣 .

5.2 Exploit Solving

At the core of our exploit generation procedure is the function FindExploit, whose goal is to
compute a concrete exploit from an exploit outcome. Formally, this function takes as input an
exploit outcome and generates a set of exploit models, 𝜀 : X ⇀ V , mapping the symbolic variables
of the exploit outcome to concrete values. Fig. 5 shows the definition of FindExploit for command
and code injection, and prototype pollution outcomes. We write FindExploit(𝜔) ⇝ 𝜀 to mean
that the set of exploit models generated by FindExploit for the outcome 𝜔 contains the model 𝜀.
To concretize an injection exploit, we must first extend the path constraint of the outcome, 𝜋 ,

with a constraint that ensures that the payload is valid and triggers unintended behavior. To this
end, we maintain a set of exploit patterns for injection sinks that guarantee that the sink payload
is well-formed and contains an attack. In the rules, we write 𝜋 ′ ∈ AttackPatts(CMI/CDI, 𝑣) to
mean that if 𝜋 ′ holds, then the symbolic payload 𝑣 fits one of the CMI/CDI attack patterns. Then,
we check if the conjunction of the path constraint and the attack pattern constraint, 𝜋 ∧ 𝜋 ′, is
satisfiable, in which case we output the corresponding model 𝜀. Concretizing a prototype pollution
exploit outcome is substantially simpler; we simply check if the path constraint of the outcome is
satisfiable and output the corresponding satisfying model.
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Attack Patterns. When it comes to command and code injection outcomes, we must ensure that
the generated payloads satisfy the syntactic rules of their respective sinks and trigger unintended
behavior. To this end, we maintain, a set of attack patterns that capture possible attacks and ensure
that sink payloads are well-formed. Formally, wemodel these patterns as a relation AttackPatterns
that associates pairs of sink types and symbolic payloads to constraints that guarantee that the given
payload yields a working exploit. Table 1 shows the most relevant attack patterns for command
injection and code injection sinks. We explain the two classes of attack patterns below.

Table 1. Supported vulnerability patterns by outcome. We use | | to separate the attack patterns.

Outcome (𝜔) Patterns (P)

CMI(𝜋, 𝑓 , 𝑣) contains(𝑣, `Attack`) || 𝑣 = 𝑥1;Attack # 𝑥2 || 𝑣 = 𝑥1";Attack # 𝑥2 ∨ 𝑣 = 𝑥1’;Attack # 𝑥2
CDI(𝜋, 𝑓 , 𝑣) 𝑣 = 𝑥1;Attack // 𝑥2 || contains(𝑣, (() => { Attack })())

CMI Attack Patterns. Our CMI attack patterns cover three cases:
(1) Command Substitution: This pattern captures cases where the given symbolic payload can be

concretized to include a specific concrete attack Attack within backticks. Recall that backticks
are used in the shell to execute the command enclosed within them and can be placed anywhere
within a string.

(2) Sequence Attack: This pattern captures cases where the symbolic payload is concretized to
include a specific attack, appended as a separate command using a shell command separator,
followed by a comment. Recall that the “;” separator allows chaining commands that execute
unconditionally, while the comment truncates any remaining content.

(3) Escaped Sequence Attack: This pattern is analogous to the previous one, except that it prepends
a quote (either " or ’) before the attack sequence.

CDI Attack Patterns. Out CDI attack patterns cover two cases:
(1) Sequence Attack: This pattern is analogous to the CMI one, except that the comment is written

using the JS syntax.
(2) Anonymous Function Attack: This pattern captures cases where the given symbolic payload

can be concretized to include a specific concrete attack Attack within the body of an anony-
mous function.

6 Evaluation

In this section, we evaluate the effectiveness and performance of Explode.js in generating exploits
against npm packages, focusing on the following four research questions:
• RQ1: How effective is Explode.js in generating exploits and how does it compare to the state-of-
the-art tools for exploit generation for Node.js modules?
• RQ2: Can Explode.js find zero-day security vulnerabilities in real-world npm packages?
• RQ3: What is Explode.js’ performance and how does it compare to that of state-of-the-art tools
for exploit generation for Node.js modules?
• RQ4: How does each component of Explode.js contribute to finding vulnerabilities?

Experimental Setup. To address our research questions, we used three datasets. Two of these are
complementary vulnerability datasets from prior work, which we use as ground truth: VulcaN [10]
and SecBench [9]. They exhibit different vulnerability distributions over vulnerability types, as
summarized in Table 2. The third dataset, which we refer to as Collected, consists of popular Node.js
packages obtained from the npm repository. In summary:
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Table 2. Summary of the reference datasets per vulnerability type: “Raw Total” refers to the total number of
vulnerabilities in the dataset, and “Total” refers to the number of vulnerabilities considered in our study.

Vulnerability Type CWE

Vulcan SecBench
Total Dist. (%)

Raw Total Total Raw Total Total

Path Traversal CWE-22 5 5 170 161 166 27.5%
Command Injection CWE-78 92 87 101 82 169 28.03%

Code Injection CWE-94 41 33 40 21 54 8.96%
Prototype Pollution CWE-1321 98 94 192 120 214 35.49%

Total 236 219 503 384 603 100.00%

(1) VulcaN [10] consists of 957 Node.js packages from the npm repository, containing 219 vulnera-
bilities supported by Explode.js.

(2) SecBench [9] consists of 503 vulnerable Node.js packages reported in the GitHub Advisory
Database, Synk, and Huntr.dev, containing 384 vulnerabilities supported by Explode.js.

(3) Collected consists of 32,137 popular real-world Node.js packages crawled from the npm reposi-
tory in September 2023. We consider a package to be popular if it had ≥ 2, 000weekly downloads
at the time of collection. For the collected dataset, there is no ground truth because we did not
manually analyze the source code of the packages to identify exploits.
To compare Explode.js with prior work, we used FAST [36] and NodeMedic [15] on the ground

truth datasets SecBench and VulcaN. Our testbed consisted of 6 Ubuntu 22.04.3 servers with 64GB
of RAM and two Intel(R) Xeon(R) Gold 5320 2.2GHz CPUs. We set the total analysis timeout to five
minutes as all tools analyzed over 90% of the datasets within this period.

6.1 RQ1: Effectiveness in Exploit Generation

We assess Explode.js’s effectiveness in detecting and confirming vulnerabilities and compare
it to FAST and NodeMedic using the ground truth datasets VulcaN and SecBench. Results are
summarized in Table 3. Note that NodeMedic has no results for vulnerability types CWE-22 (Path
Traversal) and CWE-1321 (Prototype Pollution), indicated by “–”, as it does not support these
vulnerability types.

True Positive (TP). A TP vulnerability is a known vulnerability for which the tool is able to find a
control path connecting an exported function to the corresponding sensitive sink, regardless of the
tool’s ability to generate a working exploit. The columns titled “TP” in Table 3 show that Explode.js
can find 2.90× and 5.23× more control paths than FAST and NodeMedic, respectively, identifying

Table 3. Comparison of Explode.js, FAST, and NodeMedic across combined VulcaN and SecBench datasets.
Metrics include true positives (TP), false negatives (FN), exploits (E), recall (R) and exploit rate (Er).

CWE Total

Explode.js FAST NodeMedic

TP FN E R Er TP FN E R Er TP FN E R Er
CWE-22 166 97 69 84 0.584 0.506 6 160 0 0.036 0 – – – – –
CWE-78 169 112 57 70 0.662 0.414 108 61 66 0.639 0.390 55 114 38 0.325 0.225
CWE-94 54 24 30 13 0.444 0.240 7 47 3 0.130 0.056 12 42 4 0.222 0.074
CWE-1321 214 118 96 111 0.556 0.518 0 214 0 0 0 – – – – –

Total 603 351 252 278 0.582 0.461 121 482 69 0.200 0.114 67 156 42 0.300 0.188
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Fig. 6. Overlap of true positives detected by all tools across combined VulcaN and SecBench datasets.

351 control paths compared to 121 for FAST and 67 for NodeMedic. In particular, Explode.js finds
twice as many command injection control paths (CWE-78) as NodeMedic, three times as many
code injection control paths (CWE-94) as FAST, and is the only system capable of finding control
paths for prototype pollution, identifying 55.6% of the ground truth dataset. This improvement is
mainly due to our analysis for inferring VISes, which effectively finds the correct sequence of calls
and argument types in order to reach the vulnerable sink.
Regarding the specific vulnerabilities each tool can identify, Fig. 6 shows that for CWE-22,

Explode.js finds control paths different from those of FAST. This is because FAST can only find
path traversal vulnerabilities in web-server modules that register the vulnerable function as a
callback for a specific route. In contrast, Explode.js cannot statically identify a VIS for these
cases because they require non-linear VISes. For CWE-78, Explode.js identifies the majority of
control paths found by NodeMedic and FAST, with 36 detected exclusively by NodeMedic and FAST.
This is because these modules use third-party packages that implement higher-order iterators
working with callbacks. Essentially, these iterators take a function as input and invoke it on a
collection of elements. Our lazy values do not simulate the execution of callbacks, resulting in these
vulnerabilities being undetected. Finally, for CWE-94, the control paths detected by Explode.js
largely subsume the ones detected by the other tools.

False Negative (FN) and Recall (R). A FN vulnerability is a known vulnerability for which the
tool is unable to find a control path connecting an exported function to the corresponding sensitive
sink. Recall is calculated as 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 ).
The columns titled “FN” in Table 3 show that Explode.js reported 252 FNs, compared to 482

for FAST and 156 for NodeMedic. The columns titled “R” in the table show the recall obtained by
each tool. When comparing only CWE-78 and CWE-94, Explode.js achieved the highest recall
of the three tools, obtaining 60.5%, which is an increase of 9 percentage points over FAST and 30
percentage points over NodeMedic. When considering the entire dataset, Explode.js achieves a total
recall of 58.2% which is 2.90× the recall of FAST (20.0%) and 1.94× the recall of NodeMedic (30.0%).

Table 4. Reasons for Explode.js’s FNs.

Reason Portion (%)

Lazy Values 39.7%
Unsupported VIS 21.8%

Timeout 15.5%
Stdlib 12.3%

JS Semantics 10.7%

We manually analyzed the reasons why Explode.js missed
252 vulnerabilities, summarized in Table 4. The largest cat-
egory, with 39.7%, consists of limitations in the lazy value
implementation. Specifically, we currently lack support for
array accesses (i.e., 𝑒1 [𝑒2]) and for class instantiation using the
new operator over lazy values. The second-largest category, at
21.8%, includes modules with non-linear VISes. Next, 15.5% of
false negatives arise from timeouts during symbolic execution
due to the size and complexity of the underlying code, and
12.3% from limitations in our current implementation of the
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Table 5. Summary of exploits identified by Explode.js in the Collected dataset, detailing the total number of
control paths and successfully generated exploits, along with the number of malicious and 0-day exploits.

Vulnerability

Type

Vulnerable Paths Exploits

Malicious 0-day

Total (%) Total Er (%)

Path traversal 88 30.24 70 24.05 23 23
Command Injection 151 51.89 51 17.52 19 18

Code Injection 45 15.46 2 0.69 2 2
Prototype Pollution 7 2.41 2 0.69 2 1

Total 291 100.00 125 42.95 46 44

Node.js standard library functions. Finally, 10.7% stem from unsupported JS semantics in our SE
engine, such as async functions and generators.

False Positive (FP). While Table 3 does not comment on FPs, note that both Explode.js and
NodeMedic have zero FPs, with all generated exploits working as intended, resulting in 100%
precision. In contrast, FAST generates 52 FPs, as it uses an approximate model of the JS semantics,
causing it to consider symbolic execution paths that have no concrete counterpart. While both
Explode.js and NodeMedic may generate models for exploits that do not result in effectful exploits,
both tools ensure that such models are not outputted to the user as valid exploits.

Exploited (E) and Exploit Rate (Er). The symbol E refers to vulnerabilities for which the tool
generated a working exploit. Hence, 𝐸 ⊆ 𝑇𝑃 given that the tool only generates exploits for
vulnerabilities correctly identified as such. Exploit rate for each tool is calculated as 𝐸/(𝑇𝑃 + 𝐹𝑁 ).

The columns titled “E” in Table 3 show that Explode.js can generate 4.02× and 6.61× more
exploits than FAST and NodeMedic, respectively. Compared to FAST, Explode.js generates 1.06×
more command injection exploits (CWE-78) and 4.33× more code injection exploits (CWE-94).
Against NodeMedic, Explode.js generates 1.84× more command injection exploits and 3.25×
more code injection exploits. Notably, Explode.js excels in generating prototype pollution exploits,
producing 111 exploits compared to 0 for FAST. By combining VISes with precise symbolic execution
for JS code, Explode.js uncovers significantly more vulnerable paths than FAST or NodeMedic.
The columns titled “Er” in the table show that, globally, Explode.js achieves an exploit rate of

46.1%, which is an increase of 34 points over FAST’s and 27 points over NodeMedic’s exploit rate.

Takeaway 1: Explode.js detects 58.2% of vulnerable control paths in the ground truth datasets,
outperforming FAST by 2.90× and NodeMedic by 5.23×. It achieves an exploit rate of 46.1%
surpassing FAST by 4.02× and NodeMedic by 6.61×.

6.2 RQ2: Exploit Generation in the Wild

We assess Explode.js’s capability of finding zero-day vulnerabilities, by applying Explode.js to the
Collected dataset, comprising 32k Node.js packages taken from the npm repository. In the following,
we say that the tool identified a zero-day exploit if: (1) Explode.js generates a proof-of-concept (PoC)
exploit with an observable side effect; (2) it is not the intended behavior of the package; and (3)
there is no information about the vulnerability in the corresponding package repository.
Table 5 summarizes our results. Initially, Explode.js identified 291 vulnerable control paths in

95 packages (column “Vulnerable Paths”). From these, Explode.js automatically generated 125
PoC exploits with observable side effects (column “Exploits”). Each exploit was manually verified.
We first excluded every exploit targeting packages that merely serve as wrappers for vulnerable
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Fig. 7. CDF plots comparing analysis and exploit generation times for Explode.js, FAST, and NodeMedic.

sinks (e.g., exec-sync, a synchronous wrapper for exec), for which the exploit corresponds to the
intended behavior of the package. This left us with 46 exploits that can be leveraged by malicious
users to trigger non-intended side effects in the execution platform (column “Malicious”). After
further analysis, we excluded two exploits because their corresponding vulnerabilities had already
been reported, resulting in a total of 44 new zero-day vulnerabilities (column “0-day”).1 Lastly, we
ran NodeMedic and FAST on the 44 zero-days reported by Explode.js. NodeMedic identified 4
vulnerable control paths but no exploits, while FAST detected 10 control paths and found 4 exploits.

Ethical Disclosure. Disclosure of confirmed vulnerabilities was responsibly performed. For all
verified vulnerabilities, we searched for the containing npm module’s source code repository (e.g.
GitHub) to check for disclosure guidelines and package maintainer contacts. For vulnerabilities for
which we identified maintainer modes of contact, we sent an email describing the vulnerability
together with the PoC that demonstrates the exploit. For maintainers that did not agree with our
assessment, we submitted the vulnerability report to MITRE.

At the time of submission, we contacted maintainers of the npm modules of these 44 vulnerabili-
ties, having received twenty replies. Notably: (1) two vulnerabilities were assigned CVEs via MITRE
(2024-46503 and 2024-44711); (2) two vulnerabilities were assigned CVEs via GitHub advisories
(2024-43370 and 2024-45390); and (3) four additional vulnerabilities were acknowledged by their
developers, with three under review by GitHub advisories.

Takeaway 2: Out of 95 packages, Explode.js found 291 vulnerable paths and generated 125 exploits,
of which 46 enable malicious actions, leading to 44 zero-days, for which 4 CVEs have already
been assigned: CVE-2024-43370, CVE-2024-44711, CVE-2024-45390, CVE-2024-46503.

6.3 RQ3: Performance Evaluation

Execution Time. We measure the time taken by Explode.js, FAST and NodeMedic to detect
vulnerabilities in each npm package from both our reference datasets, consisting of 219 packages
from VulcaN and 384 from SecBench. Fig. 7 plots two cumulative distribution function (CDF) plots
for each tool comparing time to finish the analysis and time to find an exploit.

In Fig. 7a, we depict the first 120 seconds, although each package can take as much as 10 minutes
to be processed as per our pre-defined analysis timeout. Within just 20 seconds, both FAST and
NodeMedic finish analyzing more than 80% of the packages. In contrast, Explode.js took 50 seconds
1Of the 44 new zero-day vulnerabilities, 25 are found in packages that developers claim should not be used in open
environments like web servers. However, their respective documentation omits such restrictions potentially leading
unsuspecting users to integrate one of these packages into an open system, unwittingly exposing themselves to a vulnerability.
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Table 6. Average time taken by each analysis phase for Explode.js, FAST, and NodeMedic across different
CWEs, broken down into static analysis, symbolic execution, and fuzzing or exploit generation times.

CWE

Explode.js FAST NodeMedic

Static Symbolic Total Path Gen. Exploit Gen. Total Fuzzing Expl. Synth. Total

CWE-22 29.106 2.462 31.568 1.435 2.836 4.271 – – –
CWE-78 33.976 6.545 40.521 4.075 16.331 20.405 13.530 3.246 39.311
CWE-94 42.947 11.926 54.873 4.284 1.655 5.939 2.173 0.760 18.824
CWE-1321 31.162 10.948 42.112 16.980 0 19.130 – – –

Global Average 32.450 7.278 39.728 7.045 5.937 13.674 4.396 0.946 19.730

to reach the 80% mark. This is due to a constant startup overhead incurred by stopping and starting
a Neo4j instance at the start of the static analysis phase.

While Explode.js is the tool that least analyzed the dataset by the 40-second mark, Fig. 7b shows
that Explode.js detected the most vulnerabilities by that point. Concretely, Explode.js detects 2.0×
more real vulnerabilities than FAST and 8× more than NodeMedic.
To further break down performance, we calculated the average package analysis times of Ex-

plode.js, FAST, and NodeMedic for packages that did not time out, grouped by vulnerability type.
For each tool, we further break down the time into two phases. In particular, for Explode.js we
show static analysis time (column “Static”) and symbolic execution time (column “Symbolic”); for
FAST we show path generation time (column “Path Gen.”) and exploit generation time (column
“Exploit Gen.”); and, for Nodemedic we show fuzzing time (column “Fuzzing”) and exploit synthesis
time (column “Expl. Synth.”). Table 6 summarizes these findings.

Across all vulnerability types, Explode.js is on average 2.9× slower than FAST and 2.0× slower
than NodeMedic. However, Explode.js’s symbolic execution is more efficient for path traver-
sal (CWE-22) and command injection (CWE-78), with FAST potentially taking up to 2.49 times
longer to process a package. Conversely, for prototype pollution (CWE-1321), the situation is
reversed: Explode.js takes significantly longer to analyze these vulnerabilities, but it is also the
only tool capable of detecting this type of vulnerability. This raises the hypothesis that if FAST
and NodeMedic also attempted to identify this type of vulnerability, their performance would be
significantly impacted. Notably, unlike code injection and command injection vulnerabilities, which
typically have a limited number of sensitive sinks, prototype pollution generally has a large number
of potential sinks, one for each dynamic property update.

Takeaway 3:Although Explode.js takes longer to analyze the dataset than FAST andNodeMedic, by
the 40-second mark, it finds 2.0× more vulnerabilities than FAST and 8.0× more than NodeMedic.

6.4 RQ4: Necessity of Explode.js Components

Table 7. Effectiveness of Explode.js
without the VIS and without lazy values.

CWE

Full No LVes No VIS

TP E TP E TP E
CWE-22 97 84 3 1 0 0
CWE-78 112 70 57 46 60 44
CWE-94 24 13 17 10 8 1
CWE-1321 118 111 41 33 18 5

Total 351 278 118 90 86 50

We assess the effectiveness and necessity of Explode.js’s
components by performing two experiments. In the first,
we ran Explode.js without using lazy values; and, in the
second we ran Explode.js using lazy values but without
using the VISes. Table 7 shows that removing lazy values
(columns “No LVes”) significantly degrades effectiveness,
with the system without lazy values finding only 118 TP
versus the previous 351. For CWE-78, we can observe that
the system with lazy values found 112 TP, while the system
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1 module.exports = Git() { ...
2 Git.prototype[command] =
3 function(opts) {
4 // ...
5 var cmd = 'git ' + command;
6 if (opts) cmd += ' ' + opts;
7 // ...
8 this.queue.push((cb) => {
9 exec(cmd, { cwd: base }, (err, out) => {

10 // ...
11 });
12 });
13 return this;
14 }

(a) Command construction.

1 Git.prototype.run = function(cb){
2 var self = this;
3
4 function next(err, res){
5 if (err) return cb && cb(err);
6
7 var fn = self.queue.shift();
8 if (!fn) return cb && cb(err, res)
9

10 fn.call(self, next);
11 }
12
13 next();
14 }

(b) Execution of commands.

Fig. 8. Case Study 1: Command injection in gity@1.0.5. (a) The module queues commands based on
unsanitized user input. (b) The run function executes each queued command, enabling injection.

without lazy values found 1.96× less, which is only 57 TP. Similarly, for CWE-22, the full system
was able to detect 97 TP, whereas when lazy values were disabled it identified 32.3× less, which is
only 3 TP. These results indicate that the lazy values component is a crucial part of Explode.js,
since without it, we can only detect trivial exploits that do not include any external dependencies.
Running Explode.js without VISes (columns “No VIS”) also has a significant impact on effec-

tiveness, with TP dropping to 86 compared to 351 in the full version. Similarly to the previous
experiment, for CWE-78, the results are 1.86× less than those of the full version, corresponding
to 60 TP. For CWE-22, the system with no VISes does not find any TP. These results indicate
that, without the VIS component, Explode.js is only able to detect trivial exploits in which the
vulnerable function is directly exported by the vulnerable module.

Takeaway 4: The core techniques of Explode.js (VISes and lazy values) are key to its effectiveness.

6.5 Case Studies

In this section, we describe two case studies that illustrate the need for the two core components of
our architecture: the VISes and the lazy values.

Vulnerable Interaction Scheme. To illustrate the importance of VISes, we analyzed a known
vulnerability in the gity@1.0.5 npm package.2 This package provides an API for interacting
with Git within Node.js, exposing Git commands through a prototype-based function object, Git,
implemented in a builder-like pattern (see Fig. 8a). Notably, this module is vulnerable to a command
injection attack. Specifically, on line 6, a user-controlled argument, opts, is concatenated with the
cmd string, and subsequently passed to the vulnerable sink, exec, on line 9, without any proper input
sanitization. Additionally, due to the builder-like pattern, these exposed functions do not execute
actions immediately. Instead, each function registers a callback in a queue for deferred execution
(line 8). As a result, triggering the vulnerability requires chaining a call to the run function (see
Fig. 8b), which recursively processes the callbacks in the queue (lines 4-13).

Consequently, the VIS for this exploit requires three distinct interactions to reach the vulnerable
function. First, we must call the module’s constructor (line 1, Fig. 8a) to instantiate the Git command
builder. Next, we need to call a Git command on the returned object to register the callback (lines

2https://security.snyk.io/vuln/SNYK-JS-GITY-1012730
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1 var exec = require('child_process').exec;
2 var merge = require('merge');
3 var dargs = require('dargs');
4
5 Compass.prototype.compile = function(options) {
6 var options = options || {};
7 var options = merge(this.defaultOptions, options);
8 var command = generateCommand(options);
9

10 return new Promise(function(resolve, reject) {
11 exec(command, function(error, stdout, stderr) {
12 if (error) // ...
13 else {
14 resolve(compassOptions.cssDir);
15 }
16 });
17 });
18 }

(a) Vulnerable function.

1 var generateCommand = function(options) {
2 var compassCommand = options.compassCommand;
3 var excludes = ['compassCommand'];
4 var args = dargs(options, { excludes: excludes });
5 var command = [compassCommand, 'compile']
6 .concat(args)
7 .join(' ');
8 return command;
9 };

(b) Command construction.

1 let Compass = require("compass-compile");
2 let compass = new Compass();
3 let options = { "compassCommand" : "touch pwned" };
4 compass.compile(options);

(c) Command injection exploit.

Fig. 9. Case Study 2: Command injection incompass-compile@0.0.1 package.

8-12, Fig. 8a). Finally, we must invoke the run function to execute the queued callbacks. A concrete
exploit for this vulnerability is:

let Git = require("gity"); let git = Git().add('*.js; touch pwned.txt;\#').run();

Lazy Values. To highlight the need for lazy values, we examine a vulnerability in the npm package
compass-compile@0.0.1,3 This package acts as a wrapper forCompass [20], a sass-based stylesheet
framework that simplifies CSS maintenance. The module (Fig. 9a) exports a Compass class with a
compile function (lines 5-18) that constructs a shell command, based on user-provided options. The
generateCommand function (Fig. 9b) builds a command string by concatenating compassCommand
with other options, after processing themwith the dargs utility and excluding the compassCommand
itself. The exploit shown in Fig. 9c demonstrates how an attacker can inject arbitrary shell commands
by providing a malicious compassCommand option, such as touch pwned. This input triggers a
command injection vulnerability, allowing the attacker to execute malicious commands.
In this example, we use lazy values to model the behavior of the external modules dargs

and merge. Without them, we would need to incorporate the external module’s code directly
in the analyzed application code, which could significantly impact scalability. In particular, the
dargs utility converts objects into command-line argument arrays, which heavily rely on string
manipulation functions, such as search and replace, making it costly to model directly in symbolic
execution. Bundling all external dependencies in the Compass module, the code size increases by
6.38×, from 36 lines-of-code (LoC) to 230 LoC, which results in the symbolic execution engine
exceeding 8 GiB of RAM usage within the first 300 seconds, at which point the analysis was halted.
On the other hand, analyzing this library with lazy objects only takes 0.5 seconds.

7 Limitations

In this section, we discuss Explode.js’s current limitations. Currently, Explode.js only supports
linear call chain generation, producing linear VISes that contain no more than one call to the same
function (limitation 1). Furthermore, our coverage of the JS semantics is incomplete because our JS
symbolic execution engine is not fully compliant with the JS standard [19]. Specifically, it currently
lacks support for async and generator functions, Unicode, and the BigInt and SharedArrayBuffer

3https://security.snyk.io/vuln/SNYK-JS-COMPASSCOMPILE-564429
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built-ins (limitation 2). Additionally, Explode.js over-approximates the behavior of external func-
tions using lazy objects (limitation 3), and it supports only a fixed set of attack patterns (limitation
4). For command injection vulnerabilities, the current attack patterns allow for the generation of
most exploits. For code injection vulnerabilities, Explode.js currently supports only a small subset of
the JavaScript syntax, requiring more attack patterns to capture more complex syntactic constructs.
Despite restricting the general applicability of Explode.js, limitations 1 and 2 do not have a

significant practical impact on its effectiveness, accounting for only 55 (16.9%) and 27 (8.3%) failed
exploit generation cases in the evaluation dataset. In contrast, limitations 3 and 4 have a greater
impact, being responsible for 131 (40.3%) and 47 (14.5%) failed exploit generation cases. To mitigate
their impact, Explode.js has a modular architecture that streamlines the addition of both: (i) new
symbolic summaries that precisely model external libraries; and (ii) new attack patterns that capture
vulnerable sink payloads for which the tool is not currently able to generate effective exploits.

8 Related Work

Exploit Generation Techniques. Most prior work on JavaScript exploit generation targets cross-
site scripting vulnerabilities [27, 28, 40, 52], constructing exploits from concrete expressions that
reach sensitive sinks [8]. While effective for webpages with simple, primitive input types, this
approach is unsuitable for Node.js applications, where inputs are more complex (e.g., multi-nested
objects, arrays, and higher-order functions) and often pass through multiple functions before
reaching the sensitive sink. Other works have used constraint solvers to generate exploits for client-
side JS [63] and languages like PHP [1], employing dynamic symbolic execution to trace paths
from attacker-controlled inputs to sensitive sinks. Some approaches combine symbolic execution
with fuzzing to address path explosion [31, 64]. However, these methods overlook vulnerabilities
requiring multiple function calls in a specific order, making them unsuitable for Node.js.

Vulnerability Detection Tools for Node.js. These tools generally fall into three categories
and share an important shortcoming: they report false positives, meaning that developers must
manually validate each generated potential-vulnerability report. Code property graphs (CPGs)-
based tools [22, 23, 36, 38, 44] have been adopted for various programming languages [11, 53] and
analytical scopes [22, 60] by performing customizable graph traversal queries on the application’s
syntax and flow graphs. However, most lack built-in vulnerability confirmation, with FAST [36]
being the only exception; even so, it only confirms that vulnerable executions reach sensitive sinks
without verifying any observable effect. Dynamic taint propagation tools [16, 29, 37] use the Jalangi2
framework [58] to instrument the execution of Node.js packages to detect vulnerable taint flows.
NodeMedic [16] is the only tool among them with a built-in vulnerability confirmation mechanism,
however, it does not handle vulnerabilities that require chaining multiple function calls to the given
package. Static taint propagation tools [50, 62] are based on abstract interpretation and primarily
focus on scalability. However, these tools do not incorporate vulnerability confirmationmechanisms,
typically flagging many false positive vulnerabilities and therefore requiring manual confirmation.

Symbolic Execution. SE tools can be broadly divided into two main groups: static and dynamic.
Static SE tools, such as [2–4], explore the entire symbolic execution tree up to a pre-established
bound. Dynamic SE tools, such as [13, 14, 30, 48], pioneered by DART [30], normally work by
pairing up concrete execution with SE to fallback to concrete execution whenever SE produces
formulas not supported by the underlying SMT solver [54]. For JS there are multiple static and
dynamic SE tools, such as [26, 41, 45, 57–59]. One of the main challenges of implementing symbolic
execution for Node.js is supporting interaction with third-party code, which we achieved through
the use of lazy values. We could have instead used concretization [7] or an incomplete form of
concolic execution [30]. However, these techniques under-approximate the set of possible execution
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paths, potentially introducing false negatives. Most works that use lazy values in symbolic execution
target statically typed languages [12, 13, 39], where type information can be leveraged to constrain
their behavior. In the context of JS, the only other tool that uses lazy values is JaVerT 2.0 [26], which
employs them solely to lazily initialize object properties. Our use of this technique in Explode.js
goes beyond that of JaVerT 2.0, as our lazy values can also transform into values of a specific type
when involved in type-specific operations, and can even turn into dummy functions when used in
call operations.

Combining Static Analysis with Symbolic Execution. Prior work has demonstrated the effec-
tiveness of combining static analysis with symbolic execution for vulnerability discovery in various
domains and analytical scopes, such as identification of memory leaks [43], race conditions [69],
and browser bugs [12]. The main difference between these works and Explode.js is that they target
entire programs, while Explode.js focuses on libraries. Specifically, the most pressing challenge
in these works is that the programs to be tested contain vast amounts of code, making the direct
application of symbolic execution to the program’s entry point (i.e., the main function) not feasible.
To address this, they use static analysis first to identify control-flow paths leading to potential bugs
and then instrument symbolic execution to ensure that only those paths are followed.
In contrast, our work focuses on finding vulnerabilities within libraries and confirming them

through the generation of effective exploits. Our main challenge lies in constructing specific
sequences of calls to a library’s (package) top-level functions to activate potentially vulnerable
code. In most cases, there is no main function to initiate the library’s execution; hence, we must
generate the test driver ourselves. Our work is the first to combine static analysis with symbolic
execution to create such drivers, as well as exploit payloads for confirming vulnerabilities.

Automated Driver Generation. Automated test generation often relies on fuzzing libraries [42,
46], which require fuzz drivers to exercise specific parts of the code. Our exploit templates function
similarly by creating programs that drive symbolic analysis for Node.js packages. There are multiple
tools for driver generation across various programming languages, including Fudge [6] for C and
C++, FuzzGen [34] for Java, and Crabtree [65] and Syrust [66] for Rust. There are also tools that
specialize in generating drivers aimed at specific types of applications, such as RESTler [5] and
GraphFuzz [33] for RESTful and C/C++ API testing, and Randoop [51] for Java unit test generation.

When it comes to Node.js, little work has been done on driver generation. However, this problem
entails solving language-specific challenges. JS presents unique difficulties, such as higher-order
functions, structured objects that can be dynamically extended or shrunk, and implicit runtime
type coercions. For instance, obtaining a specific inner function of a given module is not an issue in
Randoop, as it was designed for a version of Java that, unlike JavaScript, does not support higher-
order functions. Additionally, Explode.js must generate effective exploit payloads, introducing an
extra layer of complexity and technical novelty to our methodology.

9 Conclusion

Explode.js advances the state-of-the-art in automated exploit generation for Node.js packages
by synthesizing functional exploits for multi-interaction vulnerabilities. This system leverages a
unique blend of static analysis and symbolic execution to create exploit templates that confirm
vulnerabilities in complex, multi-step scenarios without producing false positives. Evaluation
against state-of-the-art tools shows that Explode.js outperforms FAST and NodeMedic, detecting
over twice as many vulnerabilities. Applied to real-world Node.js packages, Explode.js uncovered
44 zero-day vulnerabilities, four of which have already been assigned CVEs, underscoring its
effectiveness in addressing security gaps within the Node.js ecosystem.
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