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Abstract
Confidential Virtual Machines (CVMs) strive to alleviate the pro-
grammability and usability challenges of the previously proposed
enclave-based trusted computing technologies, promoting easier
deployment in cloud infrastructures. However, differing microarchi-
tectural features, interfaces, and security properties among vendors
complicate the evaluation of CVMs for different use cases. Under-
standing the performance implications, functional limitations, and
security guarantees of CVMs is a crucial step toward their adoption.

This work presents a detailed empirical analysis of two leading
CVM technologies: AMD Secure Encrypted Virtualization–Secure
Nested Paging (SEV-SNP) and Intel Trust Domain Extensions (TDX).
We review their microarchitectural components and conduct a thor-
ough performance evaluation across various aspects, including
memory management, computational and I/O performance, and at-
testation primitives. We further present a security analysis through
a trusted computing base (TCB) evaluation and Common Vulnera-
bilities and Exposures (CVE) analysis. Our key findings demonstrate,
among others, the effect of CVMs on boot time, memory manage-
ment and I/O, and identify inefficiencies in their context switch
mechanisms. We further provide insights into the performance im-
plications of CVMs and highlight potential room for improvement.

CCS Concepts
• General and reference → Surveys and overviews; • Security
and privacy→ Virtualization and security.
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1 Introduction
Context. Confidential computing [6] has become essential in cloud
environments to protect data and code in use. While the traditional
application-level enclave-based Trusted Execution Environments
(TEEs) [8, 13] offer strong security properties, they have limited
adoption by cloud users because of high programmability overheads
and compatibility issues, among other factors.

To overcome the limitations of enclave-based TEEs, major hard-
ware vendors have proposed new trusted VM-level ISA extensions,
namely Confidential Virtual Machines (CVMs) [3, 4, 10–12, 18, 20].
CVMs provide a confidential computing abstraction at the level of
a virtual machine, which allows unmodified applications to run
on it with existing software stacks while protecting data in use
from unauthorized access, even from the cloud provider. To this
end, several major cloud providers are already offering CVM in-
stances [7, 15]).
Motivation. However, CVMs from different vendors vary in mi-
croarchitectural features, hardware interfaces and security prop-
erties, despite their aim to offer the same VM-based abstraction
for trusted computing. Such differences mandate new VM man-
agement schemes, leading to changes in the system software stack
for both the host and guest environments. Therefore, understand-
ing the performance characteristics, functional limitations, and
security features of CVMs is crucial for their adoption. Although
several studies analyze CVMs, they mainly perform literature re-
views [1, 5, 13, 19] or focus on evaluating a single CVM technology
(e.g., AMD SEV(-SNP)) [2, 9, 14, 17, 21]. Our paper fills the gap
by providing a practical and comprehensive empirical analysis of
CVMs.
Our Approach. We conduct a detailed empirical analysis of two
widely-used commercial CVM technologies, AMD SEV-SNP [3],
and Intel TDX [12] (Figure 1). Initially, we thoroughly review their
(micro)architectural components to highlight their functionalities
and how they interact to achieve the security goals of CVMs. Follow-
ing, we demonstrate our experimental results, obtained through a
series of micro- and macrobenchmarks, to identify the performance
characteristics and implications of CVMs on various workload sce-
narios and use cases. We examine several CVM aspects, including
memory management, computational performance, storage and
network stacks, and attestation primitives. Lastly, we analyze the
security features of these CVM technologies and their trusted com-
puting base (TCB) size and present our Common Vulnerabilities
and Exposures (CVE) analysis.
Contributions. To the best of our knowledge, this work is the first
systematic study of modern confidential computing architectures
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Figure 1: The architecture of AMD SEV-SNP (left) and Intel TDX (right). The green regions denote CVMs, with unmodified
software (orange) and modified software (purple). The blue-hatched regions are trusted components. The thick line indicates
that each CVM is isolated from the host and other VMs with encryption. We present an in-depth empirical analysis of these
two technologies.

that are widely used in current cloud infrastructures. Importantly,
we conduct both an extensive architectural and security analysis of
CVMs, and practical experiments on real hardware. More specifi-
cally, our paper makes the following contributions:

(1) We present in-depth the architectural characteristics of AMD
SEV-SNP and Intel TDX, the core confidential virtual machine
technologies of the x86-64 platforms.

(2) We empirically evaluate the performance of AMD SEV-SNP and
Intel TDX using real hardware (4th-generation AMD EPYC Pro-
cessors, 5th-generation Intel Xeon Scalable Processors) across
multiple dimensions to cover various use cases and application
scenarios.

(3) We present a thorough security analysis of AMD SEV-SNP and
Intel TDX, examining the TCB size and the reported CVM-
related CVEs.

(4) We make our evaluation framework publicly available to facili-
tate further research endeavors in CVMs. The evaluation code
is available at https://github.com/TUM-DSE/CVM_eval.

2 Our Key Findings
Through our extensive architectural analysis and experimental
evaluation, we identify the following key findings for the examined
CVM technologies:

• Slow boot time: Booting a CVM can take over twice as much as
booting a standard VM. In addition to the additional procedure
to launch a CVM, the host-side memory management predomi-
nantly affects boot time.

• Memory allocation tax: The CVM-specific memory acceptance
operation is performance-heavy, and our memory allocation mi-
crobenchmarks show up to 92% increase for the initial memory
allocation of the CVMs.

• Costly context switch: Frequently repeating the vCPU-sleep
events (HLT) can cause a significant performance drop (e.g., NPB
shows 431% overhead in the worst case). We further show that
guest-side polling can mitigate this issue.

• I/O overhead:When the CPU utilization is high, the I/O over-
head can be significant due to the internal implementations of
the default I/O software stacks using bounce buffers. We ob-
serve up to 60% performance drop for heavy network processing
benchmarks (i.e., iperf TCP).

• Large TCB: The TCB size of a CVM typically includes millions
of Lines of Code (LoC) as it contains the full-fledged operating
system (OS) of the guest, thus increasing the attack vectors.

• New security attack vectors: 39% of the CVEs related to AMD
SEV-SNP and Intel TDX are attributed to improper validation
mechanisms, while 54% of the CVEs are associated with vulnera-
bilities in the underlying firmware. Additionally, 8 CVEs refer to
attacks from the guest to the host and from the host to the host.

Implications on the microarchitectural hardware and soft-
ware stack. There is a need to reconsider fundamental confidential
computing concepts even though the hardware, firmware, and sup-
porting software stacks constantly evolve to support more function-
alities and extend their security guarantees. Our study can serve as
a stepping stone toward enhancing cloud environments’ security,
applicability, and performance utilizing CVMs. In particular, based
on the our study, we consider the following areas for improvement:
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• Reducing and optimizing VMEXIT impact: In the context of
CVMs, VMEXITs are expensive. Reducing the number of VMEX-
ITs and minimizing VMEXIT processing time is critical for per-
formance. From a software perspective, implementing a sophisti-
cated and adaptable polling policy is desirable, while optimizing
VMEXIT processing is essential from a hardware perspective.

• Designing new boot scheme: Improving the bootup times of
CVMs through specially designed HW/SW co-designed system
stacks is essential. Such an improvement will increase the appli-
cability of CVMs in the cloud and facilitate further use cases for
CVMs (e.g., serverless computing).

• Optimizing I/O stacks: I/O stacks are vulnerable points of
CVMs, as all the data transfers must be checked and validated.
However, current approaches incur significant performance degra-
dation. Therefore, designing optimized CVM-aware I/O stacks
should become a priority.

• Unifying attestation primitives: Each CVM technology has
its own, sometimes quite convoluted, attestation primitives. A
collaborative effort to unify the attestation process is necessary
and would help to standardize a trustworthy CVM deployment
process in the cloud.

• Reducing and hardening TCB: CVMs have inherently large
TCBs, which can widen their attack surface due to the high
number of inputs from the host. Hardening and reducing the
TCB size is crucial to minimize security risks (e.g., hardened
Linux kernel, minimal LibOS).

• Open-sourcing firmware: Making the platform firmware (ASP
firmware / TDX module) ecosystem fully open-source would be
beneficial for transparency and bug-fixing reasons. Furthermore,
since it is written in C, it would be advantageous to use a memory-
safe language such as Rust.

• Testing new interfaces: New CVM software stacks can intro-
duce an attack from the guest to the host and the host to the host
as well, and testing that interface is also essential.
Full version. The full version of this work presents the details of

each evaluation with background information and discussion [16].
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