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Abstract. WebAssembly is a new technology that allows web develo-
pers to run native C/C++ on a webpage with near-native performance
and therefore much faster than typical JavaScript applications. Currently
supported by the most popular browsers, WebAssembly brings implica-
tions for the web platform since it enables more complex client apps
to run on the browser. The compact binary format, performance, and
safety mechanisms present in the language led it to be used beyond
the browser platform, being employed in the context of server-side run-
times, IoT platforms and edge computing. However, in spite of its be-
nefits, WebAssembly technology brings some security concerns attached.
In particular, vulnerabilities from C and C++ such buffer overflows can
be imported to WebAssembly. The goal of this project is to design and
implement a new tool that can statically find vulnerabilities in Web-
Assembly code. Our approach is to use code property graphs (CPGs), a
program representation that has been successfully applied to the detec-
tion of vulnerabilities in high-level languages. We propose to adopt this
representation into the realm of WebAssembly programs.
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1 Introduction

The enlargement of the Web led to more complex, sophisticated, and de-
manding CPU applications such as: games, interactive 3D visualization, audio,
and video. By historical accident, JavaScript was the only programming language
natively supported by Web browsers and the basic option for the development of
such applications. It started as a simple scripting language to bring some interac-
tion to the static Web and today, it evolved to a high-level language where large
applications are coded using it. However, JavaScript is a dynamically typed and
interpreted language. In order to run, the code needs to be downloaded, parsed,
compiled, and interpreted, which impairs speed and overall performance.

Over the years, browsers implemented optimizations such Just in Time Com-
pile (JIT) [1] and caching, which brought considerable performance improve-
ments [2]. Several additional attempts have been tried to minimize the perfor-
mance penalization of JavaScript. Adobe has developed and promoted Flash
platform [3], Sun’s proposed Java applet [4], Microsoft created ActiveX [5], and
more recently Google introduced Native Code [6]. However, they all suffer from
cross platform compatibility, and did not gain a general acceptance in large scale
with exception of Adobe Flash. Also, for being browser plugins, most of them
suffered a large number of critical vulnerabilities [7,8], thus, they have been
deprecated [9,10] or are in process of being decommissioned [11].

In 2015, engineers from four major browser manufacturers – Google, Fire-
fox, Microsoft, and Apple – collaboratively proposed a new portable, low-level
assembly-like language called WebAssembly (Wasm for short) [12]. WebAssembly
is designed, essentially, for speed. Its compact binary makes files much smaller
in comparison with JavaScript textual files and faster to decode and execute,
allowing Wasm programs to run with near-native performance with just only
10% penalty [13]. This is specially important considering that many client-side
Web applications execute over slow networks, and on mobile devices and other
resources-constrained platforms.

WebAssembly can be a compilation target for other languages such C/C++
and Rust, making these languages able to run also on the Web. However, despite
its name, WebAssembly is not quite an assembly language, as it is not meant
to any specific architecture. In general, every high-level language gets translated
down to machine code. The problem that arrives is the heterogeneity that exists
in the hardware world, where different processors implement different instruction
sets (Instruction Set Architecture) and thus, have different machine code and
consequently different kinds of assembly. At its core, WebAssembly is a virtual
ISA. It is made for the browsers with the intuit of being ubiquitous and so, being
able to run in any hardware and platform.

WebAssembly is also not meant to substitute JavaScript, but rather to com-
plement it and run alongside Javascript code. So JavaScript can call code from
a WebAssembly module and WebAssembly can call JavaScript code. In fact
there is no difference between a WebAssembly module and an ES2015 module
of JavaScript. Currently, all major browsers already implement WebAssembly
and it is available to more than 88% of all users on the Web [14]. Moreover,
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the performance gains and the safety mechanisms provided by WebAssembly
gained popularity beyond the browser platform. In particular, Wasm has been
adopted for uses in server-side runtimes [15,16,17], IoT platforms [18], and in
edge computing [19].

However, albeit the existence of security measures provided by the semantics
of WebAssembly, there are many classes of vulnerabilities such buffer overflows,
integer overflows, type confusion, use after free and double free that exist in
languages like C and C++ that can be imported into WebAssembly code [20].
Typical coding errors and multiple functions in C and C++ that are inherently
unsafe, will also be unsafe in WebAssembly.

In this work, we aim at creating Wasmati, a tool that can statically find
outstanding vulnerabilities in WebAssembly code. Such vulnerabilities can be
exploited in launch specific attacks in the context of the Web, such as cross-site
scripting (XSS), and code injection attacks. We propose to achieve this by adopt-
ing a recently proposed program analysis technique called code property graph
(CPG) [21]. CPG creates a canonical representation of code by aggregating in-
formation from a program’s syntax, control flow, and data dependencies into one
single graph. The idea is based in the existence of different graph representations
for code, and that patterns in code can be described as classes of graphs. While
all these graphs represent the same code, each one is created in a certain context
where some properties are easier expressed in some representation over another.
The search for vulnerabilities can then be reduced to performing simple queries
that translates into specific traversals of the program’s CPG.

Our tool will receive as input the WebAssembly code and a set of queries,
and outputs a list of potential issues that can cause errors at time of execution.
However, there are specific challenges in employing a CPG-based approach to the
analysis of WebAssembly, stemming from the closeness of Wasm instructions to
machine code causing a loss in expressiveness compared to high-level languages.
This work will develop a set of techniques to overcome these challenges.

The rest of this report is organized as follows. Section 2 briefly summarizes
the goals and expected results of our work. Then, section 3 provides some nec-
essary background on WebAssembly and introduces context information about
general vulnerabilities in the Web and specific vulnerabilities in WebAssembly.
Section 4 provides detailed information about current detection and analysis of
code in general and of WebAssembly code in particular. Section 5 presents our
proposed solution, covering both its architecture and implementation, and Sec-
tion 6 outlines our evaluation plan. Finally, Section 7 presents the schedule of
future work, and Section 8 concludes the report.

2 Goals

The purpose of this work is to develop a tool for detection of vulnerabilities in
client-side Web applications caused by potentially insecure interactions between
JavaScript and WebAssembly code. More precisely, we aim to:
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Goals: Build a tool that can perform static analysis in WebAssembly
code in order to detect and mitigate vulnerabilities present on it.

Our work uses the idea of code property graph that has been applied in other
languages to find vulnerabilities. In order to demonstrate the proposed solution,
we will implement a prototype of the tool that will receive WebAssembly code
and a set of queries and return a list of vulnerabilities. We will perform a set
of evaluation experiments to assess performance impact, developer involvement,
vulnerability coverage, among others. In summary, the project will produce the
following expected results.

Expected results: The work will produce i) a specification of the ar-
chitecture of Wasmati, a tool to detect vulnerabilities in WebAssembly,
ii) an implementation of the proposed architecture, iii) an extensive ex-
perimental evaluation using a fully operational prototype.

3 Background

This section provides some necessary background to understand the focus of
our work. We start by introducing WebAssembly by providing some general con-
text about this language, and then specifying in more detail how WebAssembly
code is generated and what are its built-in security mechanisms. Then, we pro-
vide an overview of some of its potential vulnerabilities, putting them in per-
spective within the landscape of vulnerabilities in existing Web languages.

3.1 WebAssembly Overview

With the evolution of the Web and its complexity, JavaScript lags behind to
create efficient implementations due to the costly interpretation by the browser.
To overcome these limitations, in 2013, asm.js [22] was introduced by Mozilla
Firefox. It is a strict subset of JavaScript and designed specially for code execu-
tion speed. Later, some browsers started to embrace asm.js and added optimiza-
tions to gain performance. Despite the considerable performance gains, asm.js
did not became a standard and lacks in some important features for performance
of critical applications with 64-bit integers, in JavaScript and consequently in
asm.js all numbers are IEEE-764 compliant [23] floating point doubles.

As an alternative, it was proposed a new standard and a new specification
for a language called WebAssembly [12], which is a portable low-level byte code
and a target compilation for efficient statically typed. It is designed to be fast
and safe to execute, language-, hardware-, platform-independent, deterministic,
easy to reason about and debug, simple interoperability with the Web, compact,
easy to decode, to validate and be generated, on the Web and off the Web.
WebAssembly is compiled from high-level languages. For now, the supported
high-level languages are C, C++, and Rust, but several ongoing projects aim to
support languages like Python [24] and C# [25]. Currently, some list includes
a dozen of other languages [26]. The resulting WebAssembly code (Wasm for
short) is then interpreted and executed in a stacked based machine.
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Fig. 1. Compilation target design.

Efficiency and performance: Because WebAssembly is more compact than Java-
Script, it takes less time to download files. Even modern techniques of com-
pression of JavaScript where size is reduced significantly, the compressed Web-
Assembly’s binary is still smaller. Also, it becomes faster to parse and validate,
there is no need to generate the abstract syntax tree to transform to an interme-
diate representation as it is already in that stage. In fact, the parsing performance
and compactness of asm.js code is inferior compared to WebAssembly [27].

Despite being interpreted, due its low-level nature, Wasm code runs at near
native speed with just only 10% penalty [13] which is a major improvement
compared to JavaScript. Optimizations also become faster, most of them were
already performed ahead of time by LLVM [28], it does not spend time run-
ning code to observe patterns and infer types used, work that is performed by
JavaScript just in time compiler (JIT). Sometimes, JIT has to throw away code
already optimized and retry it. This usually happens because JIT takes assump-
tions about the code that do not hold, for example the type of the variable. In
WebAssembly, types are explicitly given and thus there is no need to make as-
sumptions about them. For this reason, executing WebAssembly code becomes
faster. Many optimizations made by JIT are simple not needed in WebAssembly.

Runtime environment: The first release implemented by the browsers aims at be-
ing a Minimal Viable Product (MVP). This means that many important features
are not yet implemented, e.g., threading and garbage collector. The MVP does
contain basic features which enable roughly the same functionality as asm.js.

Even though the main target of WebAssembly are the browsers, there are
also many benefits to use it outside the browser. Nowadays, a significant code
base for web servers is written in JavaScript powered by runtime environments
such Node.js and desktop applications like Visual Studio Code are also written
in JavaScript powered by Electron. One of the main reasons for the usage of such
runtime environments is the portability that they offer. The same code can run
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in multiple platforms. WebAssembly can also bring performance gains without
loosing portability to those environments.

A new open source group named Bytecode Alliance founded by Mozilla,
Intel, Red Hat and Fastly [29] was created to advance the state-of-the-art in
WebAssembly runtimes and create/evolve standards such the WebAssembly it-
self and WebAssembly System Interface (WASI) [17] to give a system interface
between WebAssembly runtime and the kernel of the operating system.

3.2 Generation of WebAssembly Code

Typically, code written in high-level languages gets compiled down to assem-
bly, which represents human-readable machine code. Different processors and
architectures define different machine codes and kinds of assembly, as exem-
plified in Figure 1(a). In the Web, when delivering code to run in the user’s
machine, we do not know by advance what architecture the code will run. So,
in spite of its name, WebAssembly is not quite an assembly language as it is
not meant to a specific architecture as shown in Figure 1(b). It is a machine
code for a conceptual machine and not to an actual physical machine. For this
reason, WebAssembly instructions are often called virtual instructions and the
whole set is denominated by virtual instruction set architecture (virtual ISA).

Compiler toolchain: Humans are not meant to program in WebAssembly, since
it is a target language. This allows to provide a set of instructions that are closer
and ideal to machines and run at near native speed. However, to be debuggable
it exists a text format representation of the code [30].

The currently supported compiler tool chain is called LLVM. It is a robust
tool and has a various front-ends and back-ends that can be plugged into it. In
C for instance, exists a front-end called Clang [31] that go from C source code
to LLVM code. From this point, it is in LLVM intermediate representation and
many optimizations can be done by LLVM. For last it just needs to implement
a back-end to generate WebAssembly code from LLVM.

One current robust WebAssembly compiler is Emscripten [32] represented
in Figure 2. Emscripten is an open-source tool that compiles code written in
C/C++ down to WebAssembly. It uses Clang and LLVM to compile C/C++
code into Wasm. As represented in Figure 2, it takes C/C++ source code and
outputs three files: a Wasm file, a JavaScript file and an HTML file. The Wasm
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C program code Text Representation Binary

int addTwo(int a, int b) {
return a + b;

}

(func $addTwo
(param i32 i32)
(result i32)
(get_local 0)
(get_local 1)
(i32.add))

60
02 7f 7f
01 7f
20 00
20 01
6a

Table 1. A simple C function on the left and the corresponding WebAssembly’s text
format and binary encoding on the right side respectively.

local_get 0 local_get 1 i32.add

1
...

−→
2

1
...

−→ 3
...

Fig. 3. Stack representation during execution of the program representend in Table 1
with parameters values being 1 and 2 respectively.

file is the compiled WebAssembly module. The JavaScript file is “glue code”,
it instantiates the Wasm module, sets up the memory, imports and has the
runtime routines to execute the code. The HTML file is just a simple interface
of the application and imports the JavaScript file in order to run when the page
is loaded. Functions written in C/C++ can be exported, the exported functions
can be called by JavaScript code. Also, Emscripten provides an API and pre-
processing directives that developers can use, for instance, program JavaScript
code within the C/C++ code. This is important to make changes in the DOM.

Similar to Emscripten, there is a possibility to use Clang/LLVM targeting
WebAssembly applying WASI-SDK, compiling the source code to WASI. Then,
the binary can run in Wasmtime [33], a WebAssembly runtime outside of the
browser, or even in browser using Web Polyfill, which is a web page that imple-
ments WASI, a feature that browsers do not yet implement.

Structure of Wasm code: Regardless of the toolchain, the end result must be
a Wasm file. An example of a C program that is compiled to WebAssembly
can be found in Table 1. This examples only shows the basic encoding of each
instruction. Of course, there are also other complex instructions and information
that go along with these to encode the mechanics of the binary, for instance, the
size of the function body. The obtained Wasm file has the binary representation
of the code. To understand better how WebAssembly behaves, there are five
main basic concepts to know:

– Stack Machine: WebAssembly is a stack based machine, meaning that ins-
tructions receive arguments from the stack and return elements to the stack.
In the example shown in Table 1, the instructions local_get 0, local_get 1
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and i32.add are executed in this order. The stack during execution of the call
addTwo(1,2) can be seen in Figure 3. The instruction local_get 0 pushes
the value of the first argument of the function to the stack and local_get 1
pushes the value of the second argument. At the end, i32.add pops the two
values from the stack, executes the operation (sum) and pushes the result
onto the stack.
In practice, this reduces the encoding of the i32.add instruction to a sin-
gle byte because it does not need to specify where the arguments of the
instruction are. Consequently, reduces the size of a Wasm file.
Even though WebAssembly is specified in terms of a stack machine, the
browser does not need nor implement a stack machine due to performance
issues. The browser has flexibility to use and allocate the best registers de-
pending in the machine’s architecture where the code is supposed to run.

– Module: It represents the binary format of a WebAssembly that has been
compiled. Contains definitions of functions, imports, exports, tables, global
variables and memory. A module is stateless and can be seen as just a binary
large object (Blob).

– Memory: It is a simple and resizable JavaScript’s ArrayBuffer containing
the linear array of bytes read and written by WebAssembly’s instructions.

– Table: An array that indexes references. For instance, the function table,
indexes the function’s references existent in the module.

– Instance: A Module that has been instantiated in JavaScript. It contains
all the state it uses at runtime, for instance, the Memory the program will
use and the Tables that can be dynamically changed.

Good to mention that the Wasm instructions do not involve any registers
of any kind. It operates only with the help of the stack, pushing and popping
values. When the function goes out of scope, its return value (if exists) stands
at the top of the stack.

3.3 Security Mechanisms in WebAssembly

One of the main goals in the specification of WebAssembly is being safe. In
particular, there is a need to protect the user from applications having vulne-
rabilities due to buggy and/or intentional malicious code, and provide effective
mitigations against exploitation. With this in mind, WebAssembly was designed
with four main features that work towards such needs:

Environment: It starts with the context of execution within the browser. A
WebAssembly application is executed independently within a sandbox environ-
ment (JavaScript’s environment in case of the browser) and it can not escape
without proper APIs. Within the browser, each application module is subjected
to its security policies such as restrictions on information flow through same-
origin policies [34]. Moreover, WebAssembly is restricted in its functionality. An
application in WebAssembly has no means to handle peripherals or interact with
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the system outside of the sandbox environment. It cannot open socket and thus,
cannot make requests. Functionality within the sandbox environment is also re-
stricted. WebAssembly cannot access the DOM directly for instance. All this
functionality must be delegated to JavaScript or using existent APIs.

The same happens outside of the browser. WebAssembly is sandboxed, the
runtime is in charge to provide an API that the code can use. Anything that as
to do with system resources, the WebAssembly program must ask the runtime
via an API, and the runtime requests the operating system on behalf of the
program. In this way, the runtime can limit what a program can do. It may not
let the program act with all the permissions the current user of the operating
system has. However, this mechanism by itself is not enough to ensure security,
because the runtime may give fully access to the existent capabilities of the
system and in this case there is no improvement in security beyond that given
by the semantics of the language. Yet, there is still the possibility of hardening
functionality and create a more secure system.

Memory model: Unlike normal binary, which compiles to a specific architec-
ture, a WebAssembly module does not have access to all of the memory in its
process. It is restricted to a contiguous, untyped, byte-addressable called linear
memory varying in memory size. This size is always a multiple of a WebAssembly
page which is 64KiB. The initial size is defined by the data present in the binary
and can be dynamically increased, being always initialized to zero by default.

In the browser, the linear memory is a JavaScript’s ArrayBuffer and the
indices of the array are the addresses of the memory used by the program.
This attenuates common errors in languages such C and C++ involving unsafe
pointer usage and undefined behavior. This includes dereferencing pointers to
unallocated memory (e.g. NULL) or freed memory locations. Given that the
linear memory is, in fact, an ArrayBuffer, the JavaScript VM performs bound-
checks on access. It is worth noting that bound-check happens to the region level
(whole array) and not at context level. For routines other than the browser, the
responsability to check the bounds of linear memory belongs to the runtime.

Linear memory does not hold global and local variables. Global variables
are stored apart in a Table named global index space and are fixed-size and
addressed by index. Local variables are stored within the protected call stack
which is a structure that also holds the return addreses of the function calls.
However, data is limited by the basic types of WebAssembly, local variables with
unclear static scope such arrays, strings and other buffers existent in C/C++
are stored in linear memory. Buffer overflows [35], which result from exceeding
the boundaries of an object by writing to adjacent memory, do not affect local
and global variables. In contrast, data stored in linear memory can be affected
since the bound check is performed at linear memory region granularity as stated
above.

As WebAssembly memory are objects in JavaScript, forgotten cleared mem-
ory due to poorly memory management by the programmer, does not result in
memory leaks because the JavaScript garbage collector will take care of it.

10



Control-flow integrity: Functions calls cannot be performed to arbitrary ad-
dresses. Functions are indexed in a table and in order to be called, the target
index must be a valid entry in the function table. This specification does not
allow a common attack surface in C code where functions live in memory and
function pointers can be corrupted in such a way that can point to a different
memory location where malicious code was injected [36]. This table is a Java-
Script object named WebAssembly.Table which is an array-like structure outside
of WebAssembly’s memory. The values are references to functions.

When the function call is dynamic and unknown at compile time (e.g. poly-
morphism in C++), it triggers an indirect function call. The index is pushed to
the stack and, before the call succeeds, it is subjected to a type signature. The
signature of the called function must match the signature specified at the call
site. All the calls happen in a structure called protected call stack. It is protected
because it is not possible to overwrite a return pointer, making it invulnerable
to buffer overflows. Branches also must point to valid destinations within the
enclosing function.

Control flow is implemented in a way where calling an unexpected function is
likely going to fail. The expected and unexpected paths of execution are statically
analyzed at compile time. This hardens the possibility of hijack the control flow
of the program but does not eliminate the possibility. It is possible to gain
program control using code reuse attacks against indirect calls [37]. However,
it is not possible to use the classic technique of return-oriented programming
(ROP), which takes advantage of the execution of the few last instructions of a
function called “gadgets”, because call targets must be a valid index.

Compiler mitigations: Current advanced compilers implement default secu-
rity measures to attenuate or eliminate common vulnerabilities such buffer over-
flows, pointer subterfuge, division by zero, among others. The compiler tool-chain
used to compile WebAssembly is essentially the same used to compile to native
code giving this for free. However, some of them do not translate well for Web-
Assembly as they are not necessary. The control-flow integrity mechanisms and
call stack protection prevent direct code injection thus, measures such canaries
for stack smashing protection (SSP) [38] and restrict execution of certain sections
of memory known as data execution prevention (DEP) [39] are not necessary.
Address space layout randomization (ASRL) [40] is not currently supported by
WebAssembly. Indices of linear memory are deterministic and remain constant
between executions (also between compilation). It is expected that this func-
tionality will be available in future versions of WebAssembly. Compilers with
warnings against unsafe functions (like gets and strcpy) and provide control
flow integrity checks can protect code compiled to WebAssembly.

3.4 Vulnerabilities in Web Languages

Despite the security mechanisms available in WebAssembly, code vulnerabi-
lities are expected to exist as demonstrated by the history of Web languages.
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There is a wide range of programming languages used in the Web, both for front-
end and back-end development. The most well known are JavaScript, PHP, Java,
Python, Ruby, Perl, C#, C, and C++. They are mature languages with long
years of use. Nevertheless, many vulnerabilities in code written in those lan-
guages have been found over the years. Next, we take a general walk-through to
some of them with more focus in C/C++ and PHP.

In the case of C and C++, the developer is responsible for the memory
management, which is the cause of the majority of the known vulnerabilities in
these languages. Buffer overflows, use after free, double free, memory leaks, and
null pointer dereference are just a few. Likewise, type confusion, errors converting
types, and poorly thread management such as failure to release locks brought to
the table other languages that ease the development.

PHP was one of the first language specifically aimed at web development.
It has a combination of garbage collection and reference counting, relieving the
developer of the burden of memory management. In a security standpoint, PHP
is a poorly designed language and it is widely known by the large quantity
of vulnerabilities it causes, which will be summarily explained below. Many
functions and directives in the language allows certain functionality that usually
developers are unaware, making it easily exploitable.

Many PHP applications are susceptible to remote code execution (RCE) [41]
due to the dynamic evaluation of code in an user controlled variable. Database
accesses are also exploitable if user input is not properly sanitized allowing code
injection, namely SQL injection (SQLi) [42], resulting in disclosure of sensitive
information. In the client side, poorly written programs tend to be vulnerable
to cross-site scripting (XSS) attacks [43], where an attacker causes malicious
code to load in a website visitor’s browser and execute. This type of attack can
be specialized to a cross-site request forgery (CSRF) attack [44] which occurs
when an attacker can create a link and get a site administrator or someone with
privileged access to click on that link, thereby triggering unwanted behaviors
such as sending the administrator’s session cookie to the attacker.

The serialization/marshalling and deserialization of untrusted data consti-
tutes one of the most common vulnerabilities in the Web [45]. In PHP there
is a function called unserialize() which takes a stored object and converts to
an object in memory and this object is stored in a variable that may be user-
controlled, making it susceptible to exploits. In this respect, Python also had
some troubles dealing with object serialization using Pickles library [45].

Dealing with files can lead to remote file inclusion (RFI) and local file in-
clusion (LFI) [46]. Improper file name sanitization can allow path traversal [47],
common across the spectrum of programming languages for the web. RFI af-
fects more PHP as it has an option to load files from URLs. External files from
other websites can be executed and attackers can load a sensitive file as PHP
code and gain access to the server. Path Traversal is one of the most dangerous
vulnerability in the Web. Improper user input sanitization, can allow the user
to read arbitrary files on the server which may include credentials, server code,
other sensitive operating system files and ultimately gain server control.
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1 extern void bof(char *p1, char *p2) {
2 char bof1 [16];
3 char bof2 [16];
4 strcpy(bof1 , p1);
5 strcpy(bof2 , p2);
6 ES_ASM ({
7 document.getElementById("XSS").innerHTML = (

Pointer_stringify($0, $1));
8 }, bof1 , strlen(bof1));
9 }

Fig. 4. XSS activation from a buffer overflow.

3.5 Vulnerabilities in WebAssembly

The introduction of WebAssembly in the Web language landscape raises ad-
ditional challenges to security. In particular, with the implementation of a new
feature, by definition, the attack surface of browsers has increased. Bugs happen
and will certainly happen in WebAssembly, which may give the possibility and
the opportunity to exploits. In the last few years, a number of vulnerabilities
have already been found in WebAssembly implementations written in C++ (V8,
ChakraCore and JavaScriptCore) such as type confusion [48], use after free [49],
double-free [50,51], integer overflows [52] and not the specification.

Although these vulnerabilities are widely known, from the technical point of
view it is relevant to take a closer look at them because their exploitation is
not trivial and diverge from their classic exploitation in the Web. For example,
having a look to CVE-2017-5116 [48], a type confusion exploit chain, led to the
discovery of the fact that the WebAssembly module was backed by a JavaScript
SharedArrayBuffer, allowing concurrent modifications of an address in multi-
threaded systems. This resulted in a race condition (TOCTOU), in which it was
possible to change 1 byte of code before it got JIT-ed but after the check of
the WebAssembly module, making it possible to use the code to read and write
outside of the WebAssembly sandbox.

Some additional reasons include the fact that there is currently no mechanism
for code integrity check. This means that there is no way to verify that a certain
WebAssembly application has not been tampered with. Also, despite the security
mechanism provided by the compiler and the specification of WebAssembly,
has been shown that are possible to import vulnerabilities from languages like
C/C++ to the web including buffer overflow and format string [20]. Next, we
present some examples of representative WebAssembly vulnerabilities:

Buffer overflow: Buffers are stored within linear memory, very similar to what
GCC [53] does. Control flow information is never saved in linear memory, only
data is stored there. Which means that the return address is not saved, thereby
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making it impossible to hijack the control flow of the program in the classic way.
Instruction also cannot be corrupted as they are separated from data. However
it is possible to corrupt data stored in linear memory that are adjacent. In the
example shown in Figure 4 it is possible to see this type of exploit in action.

In this scenario, we assume that p1 is hardcoded by the developer and p2 is
a user control variable obtained in a GET or POST command. We can see that
if p2 has more than 16 bytes, it will occur a buffer overflow. Since Emscripten
places bof1 and bof2 contiguously in linear memory (with possibility of having
some bytes between them due to alignment), it results that parts of bof1 will
be corrupted by the data contained in p2. The string bof1 that was assumed
to be static can be overwritten by the user input. When line 7 is executed, the
string saved in bof1 will be written to the DOM, allowing a possible XSS. This
problem holds by the simple usage of the dangerous function strcpy.

Integer overflow: There are four primitive types in WebAssembly: i32, i64,
f32 and f64. The first two represent integers with 32 and 64 bits respectively,
whereas the last two respectively classify 32 and 64 bit floating point data.
The integers are not inherently signed or unsigned, it depends on the context
that is determined by the individual operations. The f32 and f64, also known
as single and double precision (float and double in C/C++), have the binary
representation compliant with the standard IEEE 754-2019 [23].

However, numeric values in JavaScript are only represented by the Number
primitive [54] defined with double-precision 64-bit binary format IEE 754-2019
and can take any value between −253 and 253. On the other hand, a 32-bit integer
can take any value between −231 and 231 if signed and up to 233−1 unsigned. An
integer overflow happens when an operation tries to create a numeric value out-
side of the range the representation can handle. The different number encodings,
different ranges and the interoperability between WebAssembly and JavaScript
gives opportunity to the existence of integer overflow. A scenario where there is
a counter in JavaScript with the value 233 − 1 and is passed to a WebAssembly
function expecting a 32-bit integer that returns the increment of the received
integer, would cause the return to be zero.

Integer overflows can be dangerous, the resetting of counters can be one of
the consequences, but there are other scenarios where integer overflows can hap-
pen in sensitive memory allocation functions and can be leverage to exploit a
buffer overflow or heap corruption. In the case of CVE-2018-6551 [55], a call to
malloc with argument close to the maximum integer the representation can han-
dle, could return a pointer to a heap region smaller than requested, eventually,
leading to heap corruption.

Malware: Despite the goal to protect user against malicious applications, at-
tackers still have a lot of opportunities. Cryptocurrency mining has become a
popular activity for malicious actors, leveraging a victim’s CPU and electricity
to make money. There is a prevalence of WebAssembly [56] in this kind of activi-
ties, which is normal due to a higher return on performance boost comparing to
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JavaScript. It calculates more hashes per second than the same implementation
in JavaScript. Also, WebAssembly can be the perfect trojan horse and evade
Web application firewall (WAF). With the use of Emscripten, it becomes trivial
to obfuscate JavaScript in C and be eval-ed at run-time.

Side channel attacks: Another opportunity for exploitation is the usage of
side channel attacks. In 2018 in response to the CPU vulnerabilities Spectre
and Meltdown [57,58], it was mitigated in browser by lowering the precision of
timers and disable SharedArrayBuffer in JavaScript [59]. However, in the future
is expected that WebAssembly supports threads with shared memory and very
accurate timers. That will make current browser mitigations of certain CPU side
channel attacks useless.

4 Related Work

The existence of a new source of vulnerabilities in Web applications due to
the usage of WebAssembly motivates our work, which aims at building adequate
tools for detecting and mitigating WebAssembly vulnerabilities. In this section,
we discuss the related work. We begin by providing a birds-eye view on the
two main approaches for verifying code: dynamic and static analysis. Then,
we concentrate on a specific static analysis technique that we find to be most
promising for detecting vulnerabilities in WebAssembly: code property graphs.
Lastly, we present some existing efforts in analysing WebAssembly code.

4.1 Dynamic and Static Analysis

There are many approaches and techniques for detecting vulnerabilities. De-
pending on their nature, existing techniques can be classified as dynamic or
static [60]. Dynamic analysis is where common errors that lead to vulnerabilities
are checked at runtime. Dynamic analysis tools try to execute the program over
some inputs and observe its execution while static analysis tools try to build a
model of the program state in order to reason over possible behaviors. Static
analysis of code checks common programming practices, errors, and omissions
by scanning the source code or an intermediate representation.

When compared with each other, we can highlight some key differences. Dy-
namic analysis can be: fast, if executed over a test suite, but slow if exhaustive;
precise as there is no abstraction or approximation; and unsound, meaning that
results may not generalize for future runs. In contrast, static analysis can be:
slow, depending how well it tries to approximate; usually follows a conservative
approach, thereby is sound. However, due to imperfect models, static analysis
often produce false positives, hence the necessity of human analysis. Table 2
summarizes the explained techniques. Next, we briefly introduce some known
techniques for each realm of program analysis approaches.
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Dynamic Analysis Static Analysis

Testing Lexical
Fuzzing Flow Analysis

Taint-based fuzzing Graph analysis
Symbolic execution Code property graph

Table 2. Dynamic and static analysis techniques respectively.

Dynamic analysis: Dynamic approaches can be split in two main categories:
concrete and symbolic execution. The most relevant applications of dynamic con-
crete execution are: fuzzing [61,62], in which malformed input is provided in an
attempt to trigger a crash, and taint-based fuzzing [63,64] which analyzes how the
program processes input in order to understand what parts of the input should
be modified in future runs. Unfortunately, we can only find vulnerabilities that
are triggered during execution. This means that unusual and rare paths may
unveil security flows that are not discovered by those techniques. Taint-based
fuzzer can understand what part of input to change but not how to change it.
To counteract this result, another approach is symbolic execution, which bridges
the gap between static and dynamic analysis, providing a solution to cope with
the limited semantic insight of fuzzing.

There is a lot of work in symbolically-guided fuzzers [61,65,66,67], which mo-
dify inputs identified by the fuzzing component by processing them in a dynamic
symbolic execution engine. This is a costly technique as its execution is made
over the abstract domain of symbolic variables and track the state of memory
and constraints on those variables throughout the program execution, when-
ever there is a branch, execution forks and follows both paths. This results in a
potentially exponential number of paths to consider.

Static analysis: Within static analysis, there are a multitude of approaches.
One is lexical analysis, scanning the source code for patterns or abstract the
syntax. It was one of the first techniques to find vulnerabilities and there is a
long list of vulnerability scanners used in practice as it is the case of PScan [68],
Microsoft PREfast [69] and JSLint [70], enforcing good programming practices.
Those are valuable tools, specially in development environment, however, they
fail when looking for more complex and subtle vulnerabilities. One extension to
this technique is allowing analysts to provide annotations in code. Splint [71]
finds potential vulnerabilities by checking to see that source code is consistent
with the properties implied by annotations. Microsoft extended PREfast with
annotations using macros and other C/C++ preprocessor directives. Its draw-
back becomes visible as the code base increases, it is hard to scale because it
needs manually annotated code.

Another program analysis technique is taint analysis, variables controlled by
the user are marked as tainted. From that point on, it traces them to possi-
ble vulnerable functions called sinks, if tainted values reach the sinks without
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proper sanitation, the analyzer flags a vulnerability. Huang et. al [72] were the
first to introduce a lattice-based algorithm derived from type systems and type-
state in the context of PHP code, creating a tool named WebSSARI. One of
its limitations is the impossibility of inter-procedural analysis. To address this
limitation, new techniques were proposed based in data flow analysis where is
collected information about the way variables behave, and gather information
about the possible set of values that can be assigned to them. RIPS [73] is a tool
that performs fine-grained analysis of the interaction between different types of
sanitization, encoding, sources and sinks also in PHP. This approach is highly
tight to the language in question.

There were several attempts focusing certain vulnerabilities in the Web pro-
vided by PHP applications, as is the case of SQLi and XSS. Xie and Aiken
presented an algorithm to find SQLi using block and function summaries [74].
At the same time it was also presented Pixy [75] written in Java focusing also in
XSS, using flow-sensitive, interprocedural and context-sensitive data flow analy-
sis. Balzarotti et al. [76] extended Pixy and named their solution Saner improving
the detection of user-defined sanitization by providing predefined test-cases to
check sanitization routines. There is also some work in string analysis for check-
ing the correctness of sanitization routines without the use of dynamic analysis.
The main drawback of Saner is that is only good as their test-cases are. For
instance, if it is configured to a certain pattern, other attack pattern could exist
that bypass the sanitization undetected.

Alternatively, one can use flow analysis as Pixy. Control flow determines
the flow and possible paths that program can take by explicitly describing the
execution order of each instruction. Data flow determines the flow of data and its
dependencies. It relies on building a model of a bug, represented by a set of nodes
in a control-flow or dependency graph and identify bugs through traversals of
the model. Control-flow graph has become a standard in activities such reverse
engineering in an attempt to understand better the program. Moreover, it has
been an useful tool to aid in detect variants of malicious applications [77] and
guide fuzz-testing tools [78]. However, control-flow graphs do not easily identify
statements that process data influenced by an attacker as it has no information
regarding data flow.

Ferrante et al. [79] introduced the concept of program slicing called program
dependence graph. It exposes all statements and predicates of a program and
make possible to statically analyze the propagation of attacker-controller data.
It is structured in two types of edges: control dependency which indicate that
execution of a statement depends on a predicate and data dependency which
indicate that a variable defined at the source statement is subsequently used at
the destination statement. Data dependencies are calculated by solving reaching
definitions, a known problem in data-flow analysis [80].

4.2 Code Property Graphs

In an attempt to aggregate all information in a graph, Yamaguchi et al. [21]
published the original idea of code property graph (CPG) aimed at searching for
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Fig. 4: Code property graph for the code sample given in Figure 1.

shown. The nodes of the graph mainly match the AST in
Figure 2a (except for the irrelevant FUNC and IF node), while
the transformed CFG and PDG are indicated by colored edges.

V. TRAVERSALS FOR
WELL-KNOWN TYPES OF VULNERABILITIES

The code property graph allows many different kinds of
programming patterns to be expressed, however, it is not
immediately clear how it can be employed to discover vulner-
abilities. In this section, we show that code property graphs
can be effectively mined to identify many different types of
security flaws and develop templates for the description of
vulnerabilities. We begin by exploring the limitations of purely
syntactic descriptions of code in Section V-B and proceed to
show that additional control flow information only provides a
slight improvement (Section V-C). Finally, in Section V-D, data
flow, control flow and syntactical information are combined,
thus making a large variety of vulnerabilities accessible.

A. Motivational Example
We begin with a recent example of a buffer overflow found

in an SSH implementation by Esser [7] exposing many Apple
iOS applications to attack. Esser employed a regular expression
to spot the vulnerable code shown in Figure 5.

[...] 1

if (channelp) { 2

/* set signal name (without SIG prefix) */ 3

uint32_t namelen = 4

_libssh2_ntohu32(data + 9 + sizeof("exit-signal")); 5

channelp->exit_signal = 6

LIBSSH2_ALLOC(session, namelen + 1); 7

[...] 8

memcpy(channelp->exit_signal, 9

data + 13 + sizeof("exit_signal"), namelen); 10

channelp->exit_signal[namelen] = ’\0’; 11

[...] 12

} 13

[...] 14

Fig. 5: Excerpt from the code of libssh2 showing a vulnera-
bility in the function libssh2 packet add

The vulnerable statement (marked in red) allocates memory
for the buffer exit signal using the function LIBSSH2 ALLOC

on line 6. The amount of memory to allocate is calculated
directly in the argument by adding 1 to the variable namelen.
Unfortunately, this variable is attacker-controlled and thus if
it is chosen to be the maximum size of a 32-bit unsigned
integer, the summation wraps and a value of 0 is passed to the
allocation function resulting in the allocation of only a few
padding bytes. When namelen bytes are then copied into the
undersized buffer on line 9, a buffer overflow occurs.

Esser was able to discover the vulnerable statement on line 6
using the following regular expression:

ALLOC[A-Z0-9_]*\s*\([ˆ,]*,[ˆ;]*[*+-][ˆ>][ˆ;]*\)\s*; .

Unfortunately, the regular expression only describes the
summation inside the allocation call, one of a number of
necessary conditions for the vulnerability. Moreover, the de-
scription is inherently vague as regular expressions cannot
match the nested structure of code. However, the biggest
drawback of the formulation is that the description fails to
model attacker control over the variable namelen. Furthermore,
the vulnerability would not exist if the variable had been
properly sanitized. Finally, the width of the variable is vital
for the vulnerability.

This simple example gives insight into the different prop-
erties of code that play a role in the characterization of
vulnerability patterns. In summary, the following aspects need
to be covered.

1) Sensitive operations. Security sensitive operations such
as calls to protected functionality, copying into buffers
or the allocation of memory need to be describable.
As the example shows, nested code such as arithmetic
operations inside allocations are of great interest, and
thus full access to an AST is necessary.

2) Type usage. Many vulnerabilities are tightly bound
to data types used in a program. For example, the
vulnerability shown in Figure 5 would not exist if
namelen was a 16 bit integer as opposed to a 32 bit
integer. This information is present in the AST.

3) Attacker control. Analysts must be able to express
which data sources are under attacker control. Referring
to the example, it is highly likely that variables returned
by libssh2 ntohu32 are attacker-controlled as the rou-
tine converts an integer from network to host byte order
and hence the integer is almost certainly received from

Fig. 6. Code property graph for code sample in Figure 5

vulnerabilities in programs. Currently, CPG is the main component of the only
product offered by ShiftLeft, they claim that it can inspect and analyze up to
500K lines of source code in less than 10 minutes [81] with high level of accuracy
compared with other state-of-the-art tools [82]. CPG can also be employed to
identify code weakness, such as methods with too many parameters, improperly
sanitized inputs, duplicate code and inconsistent name conventions present in
the construction of code. It can have similar to the current lints in the market.

1void foo() {
2int x = source ();
3if (x < MAX) {
4int y = 2 * x;
5sink(y);
6}
7}

Fig. 5. Exemplary C code sample.

Technical approach: CPG aggregate informa-
tion of different code representations in a
multi-layered structure that is richer and more
comprehensive than most known alternatives.
It delivers high insight about the analyzed
code and vulnerabilities become easier to iden-
tify. More specifically, CPG tries to gain joint
power of the source’s syntax, control-flow and
data-flow information in one graph stored in
an graph-database. In particular, a CPG is
built out of the combination of three repre-
sentations of a target program: abstract syn-
tax tree (AST), control flow graph (CFG),
and program dependence graph (PDG). For
instance, Figure 6 represents the CFG data structure for the code sample de-
picted in Figure 5. Once the CPG has been generated, the search for vulnera-
bilities in the program can be translated into querying for certain patterns via
graph-database queries, e.g., checking the existence of some path in the graph
connecting nodes that represent data sources and sinks.

In its original idea, CPG does not support inter-procedural analysis. The
authors extended the work one year later to support it [83], employing a similar
representation of the well known System Dependence Graph [84]. They extended
the CPG by explicitly defining data-flow between call sites and their callees intro-
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ducing edges between the two nodes representing the arguments to parameters
of the respective callees and also between the return statement back to the call
site. This approach does not encode possible modifications of data that may
occur, nor the effects that it can have as data flows back along the call chain.
So, they also introduced the idea of using post-dominator trees [85], a classical
program representation derivable from the control flow graph. This additional
information by linking both nodes makes easy to determine if a statement is
preceded or followed by another.

At the same time, Backes et al. [86] applied the concept of code property
graph in PHP code, and extended it to support inter-procedural analysis. They
merged another graph named call graph. Call graphs are just directed graphs
whose links connect nodes between the call sites of functions and the corre-
sponding function definition, allowing to reason about control and data flow
between functions, i.e., at the inter-procedural level.

Adopting CPG for WebAssembly: The CPG data structure can be seen as libe-
ral definition, as it asks only for certain structures to be merged while leaving
the graph schema open. In consequence, when someone creates this graph to a
targeting programming language, different implementations result in an highly
different graphs between them. Different languages usually have different syntax
and different semantics thus, generates different code property graphs and also
require different queries when searching for patterns.

Consider the example presented in Table 3 by applying code property graph
in WebAssembly code that had been compiled from a C source file. The syn-
tax is clearly different thus, the generated graph will have different nodes. The
first program shows an insecure argument, vulnerable to format string. Being
vulnerable to a format string does not necessarily mean that the exploit can be
triggered. If the string passed as an argument was not user-controlled, it can
never trigger this vulnerability. However, we can flag it because there are few
reasons to ever supply a non-constant string to the printf function. The simple
check is to search nodes which call $printf with a non-constant first argument.
It can trivially be done for the C source code as for the WebAssembly’s code.

This is a task that a scanner could flag, however, if we would like to do a
more fine-grained search using data dependencies and model an attacker con-
troller variable, a simple scanner analysis will not do. Instead we can model an
attacker controlled-variable using code property graph. In the first case displayed
in Table 3, both in C as in WebAssembly, the code property graph would give
us a direct dependence between the call and the given parameters, provided by
the program dependence graph. Yet, while in the second case the complexity in
the C code is the same, in the WebAssembly is not. In the case of WebAssembly,
the compiler stores the pointer given as a parameter in a memory address in
linear memory (index 70240) alongside with constant string in another position
(index 1024). Both indexes (can be seen as pointers to memory addresses) are
the ones given as parameters to printf. The code property graph does not give
that direct dependency between the variable which is user-controller (msg) and
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C program code Text Representation

void log(char* msg) {
printf(msg);

}

(func $log (param $msg i32)
get_local $msg
i32.const 0
call $printf
drop)

void log(char* msg) {
printf("%s\n",msg);

}

(func $log (param $msg i32)
i32.const 70240
get_local $msg
i32.store
i32.const 1024
i32.const 70240
call $printf
drop)

Table 3. Two printf wrapper functions: one vulnerable to format string (first row) and
the other not (second row). On the right it is the corresponding Wasm text format.

the one that is given as input to the sink (printf). To the best of our knowledge
no single work to date has focused on CPG generation for WebAssembly code.

4.3 WebAssembly Analysis

From a research and analysis point of view, WebAssembly is significantly
more laborious language to analyze comparing to high-level language such Java-
Script due to the binary format. Binary analysis has been known as an hard
challenge, asking “will it crash?” is no different from the halting problem [87].
Bugs are not created equal. It depends on the scope, many tools analyze a specific
scope of the program or widen the analysis to the whole application. Low seman-
tics or the lack of it, hardens the problem and the ability to reason about the
program. Many challenges in classical binary analysis suffer from cross-platform
dependence as each processor has its set of instruction set. Luckily, WebAssembly
is different in that way, since it is meant to run in multiple platform. Moreover,
compilers are not bug free and can introduce new bugs not present in the source
code. Also, different compilers generate different WebAssembly code from the
same source file, consequently generating different code patterns.

As a result of being a rather new technology, there are not many available
tools for analyzing binaries and text format in WebAssembly. Analogously, there
is a lack of documentation to allow an efficient and easy way to analyze it,
making a bit like a black-box to a human analyst. Good tooling support becomes
necessary as the language evolves. Next, we briefly survey the most relevant work.

Browsers and embedded debuggers: In the front-line are the browsers and the
embedded debuggers. They take advantage of what already exists for JavaScript
– source maps. The compiler used to generate WebAssembly code must also ge-
nerate debug information in a source map format. Emscripten already generates
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source maps. The source map aggregates information and does a bidirectional
map between locations of the source code and the generated code. The browsers’
developer tools use the source maps to symbolicate backtraces, and to implement
source-level stepping in debuggers.

External runtimes: Outside of the browser, Wasmtime [33], which is a stand-
alone runtime for WebAssembly, and WASI [17], takes advantage of a modern,
high-performance debugger in the LLVM project that is built on top of Clang/L-
LVM called LLDB. This allows developers to examine their programs execution
and makes it easier to catch and diagnose bugs. Certain bugs classes may arise
in WebAssembly and not in a native build of the same code. These two tools
can be handful to develop code. However, it is required to have the source code.
When delivering code to the client, specially in the browser, the source code
is not made available, only the compiled binary. To analyze raw WebAssembly
binary, one needs reverse engineering tools that produce WebAssembly textual
form from WebAssembly binary.

Reverse engineering tools: We describe two tools that include reverse engineering
of Wasm code. The first is maintained by the official WebAssembly Community
Group called WebAssembly Binary Toolkit (WABT) [88]. It includes tools to va-
lidate modules, convert WAT files to Wasm files and vice-versa, convert Wasm
files to a C source and header, print information about the binary, remove sec-
tions of a binary file and an interpreter which decodes and runs WebAssembly
binary file using a stack based machine. In the same direction, there is already
an IDA plugin named idawasm [89] supporting loading and disassembling of
WebAssembly modules. Another dynamic analysis tool is Wasabi [90]. It takes
the WebAssembly binary and does instrumentation using callbacks and hooks.
Wasabi inserts code in the binary that eventually calls the high-level hooks writ-
ten in JavaScript giving further information such as the type of the functions in
the program in analysis. It can be useful for profiling instructions, basic blocks,
branch and instruction coverage, call graph analysis, dynamic taint analysis,
cryptominer detection through the frequence of certain instructions (e.g. xor,
add and mul) and memory access tracing. However, despite the multitude of
analysis that can be done using Wasabi, this tool is not automatic, the human
analyst is required to program all the callbacks used to perform the analysis.
Also binary is modified to perform the analysis thus, is no longer the original
program. Most existing tooling is made for dynamic and manual analysis.

5 Architecture

This section introduces Wasmati, our proposed tool for analyzing vulnerabi-
lities in WebAssembly code. We begin by providing an overview of our tool, and
then discuss some of its most interesting technical details.
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Fig. 7. Wasmati system architecture.

5.1 Overview

Figure 7 represents the general architecture of Wasmati, the system we pro-
pose to develop for finding vulnerabilities in WebAssembly. It incorporates dif-
ferent stages which will each be responsible for a specific task:

1. AST generation: The first stage as represented in Figure 7 by the number 1,
is to parse a valid binary or textual format file and generate an abstract syntax
tree (AST) which is a representation of the structure of source code.

2. CFG generation: The second stage is made doing several traverses in the
abstract syntax tree to generate the control flow graph (CFG), which explicitly
describes the order by which instruction are executed as well conditions that are
necessary for a particular path of execution.

3. PDG generation: For the third stage and with the information gathered with
the previous graphs, we will generate the program dependence graph (PDG), that
explicitly represents dependencies of data and flow between instructions.

4. CPG generation: Having the three graphs available, the code property graph
is generated by merging all previous graphs. At this point can be made a decision
to also merge other structures such call graph or add link between the arguments
of the call site and the parameters in the function definition similar to what was
explained in Section 4.2, this will allow inter-procedural analysis. Some nodes
will be added and redundant ones are removed. For common nodes, links are
added according to the existing links in each graph.
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5. CPG traversal: For the fifth and final stage, several traversals will be done to
perform the queries and output a vulnerability report. A query represents the
way of traverse of the graph in the pursue of certain properties of the underlying
software. CPG allows the expression of multiple programming patterns. Several
well-known types of vulnerabilities can be identified by specific queries that
translate to a specific traverse of the graph in search of certain properties. When
such property is found, it is flagged as a vulnerability. The system can have a set
of predefined queries configured in advance or, have the CPG generated, receive
as input a set of other queries and perform them over the code property graph.

5.2 Challenges in CPG Generation and Traversal

There are two big challenges to solve in order to generate a CPG for Web-
Assembly code. One of them is when generating the abstract syntax tree and
the other is generating the program dependence graph. Next, we discuss these
issues along with additional other challenges, e.g., in the traversal of CPG.

Challenges in generating the AST: The abstract tree is the first representa-
tion and is directly produced by parser of a compiler. It is a field already well
investigated [80]. However, as explained below, for being a low-level language,
WebAssembly loses some expressiveness when compared with the high-level ones.

The binary encoding of WebAssembly translates to a sequential set of sim-
ple instructions. Consequently, the abstract syntax tree generated from a Web-
Assembly’s binary will be a flat tree with maximum depth of 3-4 as we can see
in Figure 8(a). Luckily, one of the properties of WebAssembly is being a stack
based machine. This property lets us take one simple instruction (like add) and
express as a composition of other simple instructions. For example, the instruc-
tion i32.add needs two arguments and they must be in the stack when this
instruction is executed. The control flow graph in Figure 7 shows what instruc-
tions are executed and the order in which are executed and encodes perfectly
how it is in the binary format. Nevertheless, we can fold the instructions and
represent as they are in the textual format and shown in the abstract syntax
tree in Figure 8(b). The challenge generating the abstract syntax tree comes
by folding a set of sequential instructions into an instruction composed of other
expressions, which is, converting from Figure 8(a) to Figure 8(b). This addi-
tional work is important as it adds expressiveness and facilitates further search
of certain patterns as well finding dependencies between instructions.

Challenges in generating the PDG: In generating the program dependence graph,
it is straightforward to see that an instruction that is composed of other ins-
tructions has, by definition, a dependence with the other instructions. Finding
dependencies between instruction is direct. However, there are some difficult
challenges finding data dependencies through the flow of the program. For in-
stance, we have the code a=userInput(); b=a; c=b;, we must derive that the
third instruction depend on the first because c is dependent of value stored
in a. To succeed, firstly, using the control flow graph previous generated, it is
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(b) Folded AST

Fig. 8. AST representation.

necessary to find the set of variables defined and the set of variables used by
each instruction and calculating reaching definitions needs to formally define
the transfer functions for each instruction. There is not yet a work in reaching
definitions for the WebAssembly language, which means it will be necessary to
formally define them.

Challenges in CPG traversal and others: We will also have to define new traver-
sals in CPG. Code property graphs are different for each language and present
different code patterns. Different compilers generate different code and different
patterns, there is a need to study the code generated by each one of them. Some
traversals can be directly applied by what is implemented in other languages like
C, however, some are not trivial. The example in Table 3 is a good example of it,
the data-flow generated by the code property graph is not enough to do a proper
data-flow analysis in the code. We must try to extend the code property graph to
address indirect data dependencies statically. There are other challenges that we
are not yet total aware of and need further investigation, specially the techniques
explained in Section 4.2 on post-dominator trees.

5.3 Detecting Multiple Types of Vulnerabilities

Even thought many vulnerabilities are mitigated at runtime by the Wasm
interpreter, Wasmati may capture many errors that can lead later to failures.
Using our tool, users should be able to detect multiple types of vulnerabilities
in Wasm code. Design errors, integer overflows, integer type issues, division by
zero, buffer overflows, among others can be caught early in the development
workflow and enhance security and efficiency. This means that we should be
able to represent such vulnerabilities in terms of queries to be performed to the
CPG of the target program.

In our work, we will first focus on the detection of certain well known vul-
nerabilities from C/C++ that can be imported to WebAssembly and it context.
(Note that not all vulnerabilities present in C/C++ code become a vulnerabil-
ity when compiled down to WebAssembly.) The most common vulnerability is
buffer overflow. Despite some safety mechanism present in the specification of
the language, it is still possible to corrupt data in the linear memory. Other well
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known vulnerability is integer overflow. All number in JavaScript are represented
as a 64 bits double precision, and due to the interoperability between JavaScript
and WebAssembly can lead to integer overflows. Taint-style vulnerabilities are
also a big concern, specially when we talk about the Web. Finding sources and
sinks and lack of sanitization of data can lead to prohibit further attacks like
cross-site scripting and code injection.

5.4 Integration with JavaScript

WebAassembly and JavaScript work interchangeably, where each one calls
functions on each other. The compiler Emscripten, for instance, emits a combi-
nation of both languages and not only WebAssembly. Analysing data and control
flow in such environment becomes challenging as there are two domains where
the data and control can be in each instant of the execution. The target func-
tion can either be in WebAssembly or in JavaScript and belong also to different
modules. The construction of a code property graph takes in consideration the
granularity of given code, in case of WebAssembly, the largest is module granu-
larity. However, after created, it is possible to merge two code property graphs
if they are in the same domain and semantics by just adding edges to link them.
It becomes fairly easy to glue two WebAssembly modules.

Problems arise when the target function is in JavaScript. Gluing a CPG
generated from JavaScript code with one generated from WebAssembly is not
trivial as both graphs are intrinsically different, not just in the domain, but also
in the semantics of each node and property on it. The first approach to handle
this problem is to treat the function as a black box. We know by advance which
parameters the function takes and what type it returns as the function signature
must be specified in the WebAssembly mode when it is imported. For future
work, would be desirable to engineer a solution to integrate a code property
graph of WebAssembly’s code with a code property graph of JavaScript’s code.

5.5 Implementation

We propose to implement Wasmati by taking full advantage of the Web-
Assembly Binary Kit (WABT for short), developed by the official WebAssembly
team. It has robust tools to parse and compile WebAssembly whether it is in
binary format (wasm) or in textual format (wat). We will try to reuse that func-
tionality to produce the AST, CFG, and PDG, and merge them into a joint
data structure which is the expected result of a CPG. After that process, a set
of queries will be performed over the code property graph in order to find vulne-
rabilities. In practice, the queries will be translated to multiple traverses of the
graph in the pursue of certain properties, that are identified as vulnerabilities.

Given that WABT is developed in C++, for simplicity, Wasmati will also be
developed in C++. This brings many opportunities to employ this tool. Nowa-
days, almost every platform supports C++ and can even be compiled to the
Web using WebAssembly and run in the browser. Given the tool’s compatibility
with many platforms, it can be deployed in various models of execution. It can
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be deployed as a stand alone program, or integrated with some package/library
or even be deployed as a service where everyone can access it and run. As it can
be compiled down to WebAssembly, it is possible to create a plugin that can be
installed in the browser and verify code on-the-fly while browsing, before any
code execution, preventing possible faults/errors.

6 Evaluation

In our evaluation, our main goal is to assess the precision of our tool. Our
approach starts by verifying real world applications with known vulnerabilities
and get them as output and also find other public repositories (that can compile
to WebAssembly) and output vulnerabilities that are possibly unknown. We
intend to crawl providers of code repositories such as GitHub, GitLab, among
others and download, compile and analyze. We intend to evaluate the Wasmati
prototype, we focus in three different dimensions:

Vulnerability coverage: A tool can produce false negatives (the program has
bugs that the tool does not report) and can also produce false positives (the tool
reports bugs that the program does not contain. Despite both being problematic,
having false negatives is much more dangerous because they lead to a false sense
of security. So we aim to a sound tool, where there are no false negatives. High
percentage of false positives is also problematic because, eventually, leads to 100
percent of false nevatives which is what we get when people stop using the tool.

Performance of the tool: For performance, given the size of the input, we will
measure the time it takes to process and identify vulnerabilities by testing the
system against a large and representative collection of programs.

Involvement of the developer: Since the tool is to be used in the workflow of
the developer, we must assess how it integrates with it. It can also be useful
to assess how difficult is to apply the tool to wasm code in the wild, including
dynamically loaded wasm code.

7 Scheduling of Future Work

Future work is scheduled as follows:

– January - March: Detailed design and implementation of the proposed ar-
chitecture, including preliminary tests.

– April - May: Perform the complete experimental evaluation of the results.
– June: Write a paper describing the project.
– July - August: Finish the writing of the dissertation.
– September: Deliver the MSc dissertation.
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8 Conclusions

WebAssembly is a new technology that allows web developers to run native
C/C++ on a webpage with near-native speed. Despite the mechanism provided
by its original specification, it is possible to import common vulnerabilities from
C and C++ code, such as buffer and integer overflows. These vulnerabilities
can be leveraged by an adversary for performing exploits in the Web, such as
cross-site scripting and SQL injection. We explained our approach using code
property graph, and how it fits within the current research on security analy-
sis for WebAssembly. Finally we presented a detailed plan in how to achieve
the goals, to structure the different sub-tasks involved in the project, and the
evaluation methods to evaluate the resulting tool.
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